Adverse Maternal and Fetal Outcomes in Pregnancies Complicated by Diabetes Mellitus: A Case Series

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art020

Authors : Vinod Kumar Nelson, Shanthi Ethirajan, Vinyas Mayasa, Emani Sai Sri Jayanthi, Rohini Govindarajan, Ch. Udaya Sree Rishinya, Geetha Birudala

Abstract:

Pregnancy-related diabetes mellitus poses an increased risk of detrimental effects on the health of the mother and fetus. This case series aims to highlight the correlation between poorly managed diabetes and complications such as intrauterine fetal death (IUFD), preterm labor, macrosomia, and neonatal death. We analyzed cases of pregnant women with diabetes mellitus who experienced adverse outcomes within one year at our hospital. The cases were selected based on the seriousness of complications and gestational period at the time of occurrence. Three cases such cases were selected, IUFD was experienced by a 30-year-old woman with a gestational age of 36 weeks;a woman whose age was 29 years also experienced IUFD; whose gestational age was 37 weeks during the occurrence; and another case involved of a mother whose age was 34 and was at 3 months and 4 days of gestation, who underwent preterm delivery leading to neonatal death on the first postoperative day following the surgery. This critical nature of handling diabetes during pregnancy is emphasized in this case series to mitigate the adverse effects and the risks which include, IUFD, premature birth, macrosomia, and neonatal death. Along with continuous monitoring and glycaemic control, to avoid outcomes of complications caused by diabetes mellitus during pregnancy educating the patient is also very important.

References:

[1].   Home R., 2024. Gestational Diabetes Mellitus, IDF Diabetes Atlas, 11, 2024.

[2].   Coustan, D. R., 2013. Gestational Diabetes Mellitus, Clin. Chem., 59, 1310–1321.

[3].   McIntyre, H. D., Catalano, P., Zhang, C.,  Desoye, G., Mathiesen, E. R., and Damm, P., 2019. Gestational diabetes mellitus, Nat. Rev. Dis. Primer, 5, 1–19.

[4].   Hod. M et al., 2015. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care, Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet., 131, 173-211.

[5].   Gupta, Y., Goyal, A., Kalra, S., and Tandon, N., 2020. Variation in the classification of hyperglycaemia in pregnancy and its implication, Lancet Diabetes Endocrinol., 8, 264–266.

[6].   Metzger, B. E., Gabbe, S. G., Persson, B., Buchanan, T. A., Catalano, P. A., Damm, P., Dyer, A. R., Leiva, Ad., Hod, M., Kitzmiler, J. L., Lowe, L. P., McIntyre, H. D., Oats, J. J., Omori, Y., Schmidt, M. I., 2010. International Association of Diabetes and Pregnancy Study Groups Consensus Panel, International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy, Diabetes Care, 33, 676–682.

[7].   Metzger, B. E., Lowe, L. P., Dyer, A. R., Trimble, E. R., Chaovarindr, U., Coustan, D. R., Hadden, D. R., McCance, D. R., Hod, M., McIntyre, H. D., Oats, J. J., Persson, B., Rogers, M. S., Sacks, D. A., 2008. Hyperglycemia and Adverse Pregnancy Outcomes | New England Journal of Medicine. 16,115-144.

[8].   Goyal, A., Gupta, Y., and Tandon, N., 2022.  Overt Diabetes in Pregnancy, Diabetes Ther., 13, 589–600.

[9].   Wong, T., Ross, G. P., Jalaludin, B. B., and Flack, J. R., 2013. The clinical significance of overt diabetes in pregnancy, Diabet. Med. J. Br. Diabet. Assoc., 30, 468–474.

[10].  Corrado, F., Pintaudi, B., D’Anna, R., Santamaria, A., Giunta, L., and Di Benedetto, A., 2016. Perinatal outcome in a Caucasian population with gestational diabetes and preexisting diabetes first diagnosed in pregnancy, Diabetes Metab., 42, 122–125.

[11].  Egan, A. M., Dow, M. L., and Vella, A., 2020. A Review of the Pathophysiology and Management of Diabetes in Pregnancy, Mayo Clin. Proc., 95, 2734–2746.

[12].  Metz, T. D., Berry, R. S., Fretts, R. C., Reddy, U. M., and Turrentine, M. A., 2020, Obstetric Care Consensus Management of Stillbirth: (Replaces Practice Bulletin Number 102, March 2009), Am. J. Obstet. Gynecol., 222, B2–B20.

[13].  Maslovich, M. M., and Burke. L. M., 2024. Intrauterine Fetal Demise, in StatPearls, 35, 2091–2098.

[14].  Bekiou, A., and Gourounti. K., 2020. Reduced Fetal Movements and Perinatal Mortality, Mater. Socio-Medica, 32, 227–234.

[15].  Lynch, T. A., Westen, E., Li, D., Katzman, P. J., Malshe, A., and Drennan, K., 2022. Stillbirth in women with diabetes: a retrospective analysis of fetal autopsy reports, J. Matern. Fetal Neonatal Med.,35, 2091–2098.

[16].  Dayal, S., and Hong, P. L., 2024. Premature Rupture of Membranes, in StatPearls, Treasure Island (FL): StatPearls Publishing. Accessed: Aug. 11, 2024.

[17].  Muche, A. A., Olayemi, O. O., and Gete, Y. K., 2020. Effects of gestational diabetes mellitus on risk of adverse maternal outcomes: a prospective cohort study in Northwest Ethiopia, BMC Pregnancy Childbirth, 20, 73.

[18].  Bouvier, D et al., 2019. Risk Factors and Outcomes of Preterm Premature Rupture of Membranes in a Cohort of 6968 Pregnant Women Prospectively Recruited, J. Clin. Med., 8, 1987.

[19].  Yildiz Atar, H., Baatz, J. E., and Ryan, R. M., 2021. Molecular Mechanisms of Maternal Diabetes Effects on Fetal and Neonatal Surfactant, Children, 8,  281.

[20].  Li, Y., Wang, W., and Zhang, D., 2019. Maternal diabetes mellitus and risk of neonatal respiratory distress syndrome: A meta-analysis, Acta Diabetol., 56, 729–740.

[21].  Shanmugam, R., Tharani, M., Abullais, S.S., 2024. Black seed assisted synthesis, characterization, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles. BMC Complement Med Ther 24(24), 241.

[22].  Habeeb Rahuman HB., Dhandapani R., Narayanan S., Palanivel V., Paramasivam R., Subbarayalu R., Thangavelu S., Muthupandian S., 2022. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 16,115-144. 

[23].  Wadhwa R., Paudel KR., Chin LH., Hon CM., Madheswaran T., Gupta G., Panneerselvam J., Lakshmi T., 2021. Anti-inflammatory and anticancer activities of Naringenin-loaded liquid crystalline nanoparticles in vitro. J Food Biochem. 45, 13572.