Glutamine Synthase Expression Profiling and Selective Inhibitor for Burkholderia psuedomallei K96243: An In-silico Approach

Abstract:
Melioidosis is a potentially fatal infection caused by
the Gram-negative bacillus, Burkholderia pseudomallei following an encounter
with contaminated soil or surface water. This study was to identify the highly
expressed gene in Burkholderia pseudomallei and model the target protein's
three-dimensional structure. Further, the study was intended to determine the
better binding candidates from the existing drugs against the target protein
for melioidosis. The highly expressed gene was identified by KEGG pathway and
their target protein was modeled using homology modeling. The modeled structure
was validated by PROCHEK and it can be further used for docking studies against
existing antibacterial drugs using Argus Lab. The ADME properties of drugs were
analyzed by the ADME/Tox WEB. The results revealed that, glutamine synthetase
was highly expressed in Burkholderia pseudomallei and its 3D model was
generated. The structure validation revealed that, the structure was reliable
and reasonable. The docking studies revealed that the Chloramphenicol compound
has higher docking score against the protein glutamine synthetase compared to
other existing compounds. The acceptable range of the ADME and biological
activity prediction of Chloramphenicol compound depicts better pharmacological
properties and possible drug-likeliness. This study concluded that, the
compound Chloramphenicol may be a better inhibitor for glutamine synthetase
protein. This compound may lead to development of effective drug against
Melioidosis.
References:
[2].
Prinsloo,
C., Smith, S., Law, M., & Hanson, J., 2023, The Epidemiological, Clinical,
and Microbiological Features of Patients with Burkholderia pseudomallei
Bacteraemia—Implications for Clinical Management. Tropical Medicine and
Infectious Disease, 8(11),481. https://doi.org/10.3390/tropicalmed8110481
[3].
Shaw, T., Assig,
K., Tellapragada, C., Wagner, G. E., Choudhary, M., Göhler, A., Eshwara, V. K.,
Steinmetz, I., Mukhopadhyay, C., 2022, Environmental factors associated with
soil revalence of the Melioidosis Pathogen Burkholderia pseudomallei: A Longitudinal Seasonal
Study from South West India. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.902996
[4].
Desoutter, A.,
Deshayes, T., Vorimore, F., Klotoe, B., Durand, B., Colot, J.,
Wagner-Lichtenegger, G., Steinmetz, I., Tuanyok, A., Laroucau, K., 2024, Isolation
of Burkholderia pseudomallei from a goat in New Caledonia: implications
for animal and human health monitoring and serological tool comparison. BMC
Veterinary Research, 20, 114 https://doi.org/10.1186/s12917-024-03957-5
[5].
Mohapatra, P. R.,
Mishra, B., 2022, Burden of melioidosis in India and South Asia: Challenges and
ways forward. The Lancet Reg Health - Southeast Asia, 2, 100004. https://doi.org/10.1016/j.lansea.2022.03.004
[6]. Wiersinga, W. J., Virk, H. S., Torres, A. G., Currie,
B. J., Peacock, S. J., Dance, D. A B., Limmathurotsakul, D., 2018, Melioidosis.
Nature Reviews Disease Primers, 4(1), https://doi.org/10.1038/nrdp.2017.107
[7].
Currie, B.J.,
2015, Melioidosis: Evolving concepts in epidemiology, pathogenesis, and
treatment. In Seminars in respiratory and critical care medicine. Semin Respir Crit Care Med, 36(1):111-25, doi: 10.1055/s-0034-1398389
[8].
Bzdyl, N.
M., Moran, C. L., Bendo, J., Sarkar-Tyson, M., 2022, Pathogenicity and
virulence of Burkholderia pseudomallei. Virulence, 13(1), 1945-1965, https://doi.org/10.1080/21505594.2022.2139063
[9].
Anggraini, D.,
Siregar, F. M., Rosdiana, D., Kemal, R. A., Yovi, I., Triani, Z. D., Jasmin,
N., Dwijelita, N., Webb, J. R., Mayo, M., Kaestli, M., Currie, B. J. 2024, Epidemiology
and genetic diversity of Burkholderia pseudomallei from Riau Province,
Indonesia. PLoS Neglected Tropical Diseases, 18(5), e0012195.
https://doi.org/10.1371/journal.pntd.0012195
[10].
Gassiep, I.,
Chatfield, M. D., Permana, B., Burnard, D., Bauer, M. J., Cuddihy, T., Forde,
B. M., Mayer-Coverdale, J., Norton, R. E., Harris, P. N. A., 2024, The Genomic
Epidemiology of Clinical Burkholderia pseudomallei Isolates in North
Queensland, Australia. Pathogens, 13(7), 584
https://doi.org/10.3390/pathogens13070584
[11].
Schully, K. L.,
Voegtly, L. J., Rice, G. K., Drumm, H., Fitzpatrick, M. C., Malagon, F., Shea,
A., Dong, M., Oduro, G., Robberts, F. J.
L., Dartey, P. K. A., Owusu-Ofori, A., Clark, D. V., Cer, R. Z., Bishop-Lilly,
K. A., 2024, Phylogenetic and phenotypic characterization of Burkholderia
pseudomallei isolates from Ghana reveals a novel sequence type and common
phenotypes. Frontiers in Microbiology, 15, https://doi.org/10.3389/fmicb.2024.1401259
[12].
Seng, R., Chomkatekaew, C.,
Tandhavanant, S., Saiprom, N., Phunpang, R., Thaipadungpanit, J., Batty, E. M.,
Day, N. P., Chantratita, W., West, T. E., Thomson, N. R., Parkhill, J.,
Chewapreecha, C., Chantratita, N., 2024, Genetic diversity, determinants, and
dissemination of Burkholderia pseudomallei lineages implicated in
melioidosis in northeast Thailand. Nat Commun., 15, 5699, https://doi.org/10.1101/2023.06.02.543359
[13].
Lim, Y., Vadivelu, J., Mariappan,
V., Venkatraman, G., & Vellasamy, K. M. 2023, Effective Therapeutic Options
for Melioidosis: Antibiotics versus Phage Therapy. Pathogens, 12(1), 11 https://doi.org/10.3390/pathogens12010011
[14]. Ogata, H., Goto, S., Sato, K., Fujobuchi,
W., Bono, H., Kanehisa, M., 1999, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27, 29-34 DOI: 10.1093/nar/27.1.29
[15]. Grote, A., Hiller. K., Scheer M, et al. 2005, JCat: A novel tool to adapt codon usage of a target gene
to its potential expression host. Nucleic
Acids Research, 33, W526–W531,
DOI: 10.1093/nar/gki376
[16]. Schwede, T., Kopp, J., Guex, N.,
Peitsch, M.C., 2003, SWISS-MODEL: An automated protein homology- modeling server. Nucleic Acids Research, 31, 3381–3385, doi: 10.1093/nar/gkg520
[17].
Sivakumari,
K., Rathinabai, A.F.M.C., Kaleenam, P.K., Jayaprakash,
P., Srikanth, R., 2010, Molecular docking study of bark-derived components of Cinnamomum cassia on aldose reductase. Indian J Sci
Technol, 3, 1081-1088, DOI: 10.17485/ijst/2010/v3i10.8
[18].
Duverna, R.,
Ablordeppey, S.Y., Lamango, N.S., 2010, Biochemical and Docking Analysis of Substrate Interactions with
Polyisoprenylated Methylated Protein Methyl Esterase, Curr Cancer Drug Targets, 10, 634–648 doi: 10.2174/156800910,791859443
[19].
Tamaian, R.,
Niculescu, V., Anghel, M., 2010, In
silico Predictions for Improving permeability properties of Principal Anticancer Anthracyclines through
Structural Modification. Bull UASVM Vet
Med, 67, 329-336, https://doi.org/10.15835/buasvmcn-vm:67:1:5974
[20].
Muenzner, J.,
Trébulle, P., Agostini, F., Zauber, H., Messner, C. B., Steger, M., Kilian, C.,
Lau, K., Barthel, N., Lehmann, A., Textoris-Taube, K., Caudal, E., Egger, A.,
Amari, F., De Chiara, M., Demichev, V., Gossmann, T. I., Mülleder, M., Liti,
G., Ralser, M., 2024, Natural proteome diversity links aneuploidy tolerance to
protein turnover. Nature, 630, 149–157, https://doi.org/10.1038/s41586-024-07442-9
[21].
Kumar, U.,
Manivannan, H., Francis, A.P., Veeraraghavan, V.P., Gayathri, R., Sankaran,
S.,2023, Prediction of novel natural small molecules from Schinus molle as an
inhibitor of PI3K protein target in cancer cells using in silico
screening. Cureus, 15(12), e50863. DOI: 10.7759/cureus.50863
[22]. Narayanaswamy, R., Prabhakaran, V.S., Al-Ansari, M.M.,
Al-Humaid, L.A., Tiwari, P., 2023. An In Silico Analysis of Synthetic and
Natural Compounds as Inhibitors of Nitrous Oxide Reductase (N2OR) and Nitrite
Reductase (NIR). Toxics, 11, 660. https://doi.org/10.3390/
toxics11080660
[23].
Zhang, C., Chen,
Z., Zhang, M., Jia, S., 2023, KEGG_Extractor: An effective extraction tool for KEGG
orthologs. Genes, 14(2), 386. https://doi.org/10.3390/genes14020386
[24].
Wiltgen, M.,
Algorithms for structure comparison and analysis: Homology Modelling of
Proteins, 2019, https://doi.org/10.1016/b978-0-12-809633-8.20484-6
[25].
Stanzione, F.,
Giangreco, I., Cole, J.C., 2021, Use of molecular docking computational tools
in drug discovery. Progress in Medicinal Chemistry, 60, 273–343, https://doi.org/10.1016/bs.pmch.2021.01.004
[26].
Saini, S. R.,
Binduhayyim, R.I.H., Vishwanath, G., Abdulkhaliq, F., Ali, A., Shashit, S.B.,
Rajesh, V., Doni, D., Punnoth, P.N., Seyed,A.M., Artak.H., In silico assessment
of biocompatibility and toxicity: Molecular docking and dynamics simulation of
PMMA-based dental materials for interim prosthetic restorations. J Material
Science: Materials in Medicine, 35, 28 https://doi.org/10.1007/s10856-024-06799-7
[27].
En-Nahli, F.,
Hajji, H., Oua bane, M., 2023, ADMET profiling and molecular docking of
pyrazole and pyrazolines derivatives as antimicrobial agents. Arabian J
Chemistry, 16(11), 105262, https://doi.org/10.1016/j.arabjc.2023.105262