Glutamine Synthase Expression Profiling and Selective Inhibitor for Burkholderia psuedomallei K96243: An In-silico Approach

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art019

Authors : Gopalakrishnan V. K, G. Sumithra, M. Vishnu Priya

Abstract:

Melioidosis is a potentially fatal infection caused by the Gram-negative bacillus, Burkholderia pseudomallei following an encounter with contaminated soil or surface water. This study was to identify the highly expressed gene in Burkholderia pseudomallei and model the target protein's three-dimensional structure. Further, the study was intended to determine the better binding candidates from the existing drugs against the target protein for melioidosis. The highly expressed gene was identified by KEGG pathway and their target protein was modeled using homology modeling. The modeled structure was validated by PROCHEK and it can be further used for docking studies against existing antibacterial drugs using Argus Lab. The ADME properties of drugs were analyzed by the ADME/Tox WEB. The results revealed that, glutamine synthetase was highly expressed in Burkholderia pseudomallei and its 3D model was generated. The structure validation revealed that, the structure was reliable and reasonable. The docking studies revealed that the Chloramphenicol compound has higher docking score against the protein glutamine synthetase compared to other existing compounds. The acceptable range of the ADME and biological activity prediction of Chloramphenicol compound depicts better pharmacological properties and possible drug-likeliness. This study concluded that, the compound Chloramphenicol may be a better inhibitor for glutamine synthetase protein. This compound may lead to development of effective drug against Melioidosis.

References:

[1].   Chowdhury, S., Barai, L., Afroze, S.R., et al., 2022, The Epidemiology of Melioidosis and Its Association with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Pathogens, 11(2),149. https://doi.org/10.3390/pathogens11020149

[2].   Prinsloo, C., Smith, S., Law, M., & Hanson, J., 2023, The Epidemiological, Clinical, and Microbiological Features of Patients with Burkholderia pseudomallei Bacteraemia—Implications for Clinical Management. Tropical Medicine and Infectious Disease, 8(11),481. https://doi.org/10.3390/tropicalmed8110481

[3].   Shaw, T., Assig, K., Tellapragada, C., Wagner, G. E., Choudhary, M., Göhler, A., Eshwara, V. K., Steinmetz, I., Mukhopadhyay, C., 2022, Environmental factors associated with soil revalence of the Melioidosis Pathogen Burkholderia  pseudomallei: A Longitudinal Seasonal Study from South West India. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.902996

[4].   Desoutter, A., Deshayes, T., Vorimore, F., Klotoe, B., Durand, B., Colot, J., Wagner-Lichtenegger, G., Steinmetz, I., Tuanyok, A., Laroucau, K., 2024, Isolation of Burkholderia pseudomallei from a goat in New Caledonia: implications for animal and human health monitoring and serological tool comparison. BMC Veterinary Research, 20, 114 https://doi.org/10.1186/s12917-024-03957-5 

[5].   Mohapatra, P. R., Mishra, B., 2022, Burden of melioidosis in India and South Asia: Challenges and ways forward. The Lancet Reg Health - Southeast Asia, 2, 100004. https://doi.org/10.1016/j.lansea.2022.03.004

[6].   Wiersinga, W. J., Virk, H. S., Torres, A. G., Currie, B. J., Peacock, S. J., Dance, D. A B., Limmathurotsakul, D., 2018, Melioidosis. Nature Reviews Disease Primers, 4(1), https://doi.org/10.1038/nrdp.2017.107

[7].   Currie, B.J., 2015, Melioidosis: Evolving concepts in epidemiology, pathogenesis, and treatment. In Seminars in respiratory and critical care medicine. Semin Respir Crit Care Med, 36(1):111-25, doi: 10.1055/s-0034-1398389

[8].   Bzdyl, N. M., Moran, C. L., Bendo, J., Sarkar-Tyson, M., 2022, Pathogenicity and virulence of Burkholderia pseudomallei. Virulence, 13(1), 1945-1965, https://doi.org/10.1080/21505594.2022.2139063

[9].   Anggraini, D., Siregar, F. M., Rosdiana, D., Kemal, R. A., Yovi, I., Triani, Z. D., Jasmin, N., Dwijelita, N., Webb, J. R., Mayo, M., Kaestli, M., Currie, B. J. 2024, Epidemiology and genetic diversity of Burkholderia pseudomallei from Riau Province, Indonesia. PLoS Neglected Tropical Diseases, 18(5), e0012195. https://doi.org/10.1371/journal.pntd.0012195

[10].  Gassiep, I., Chatfield, M. D., Permana, B., Burnard, D., Bauer, M. J., Cuddihy, T., Forde, B. M., Mayer-Coverdale, J., Norton, R. E., Harris, P. N. A., 2024, The Genomic Epidemiology of Clinical Burkholderia pseudomallei Isolates in North Queensland, Australia. Pathogens, 13(7), 584 https://doi.org/10.3390/pathogens13070584

[11].  Schully, K. L., Voegtly, L. J., Rice, G. K., Drumm, H., Fitzpatrick, M. C., Malagon, F., Shea, A., Dong,  M., Oduro, G., Robberts, F. J. L., Dartey, P. K. A., Owusu-Ofori, A., Clark, D. V., Cer, R. Z., Bishop-Lilly, K. A., 2024, Phylogenetic and phenotypic characterization of Burkholderia pseudomallei isolates from Ghana reveals a novel sequence type and common phenotypes. Frontiers in Microbiology, 15, https://doi.org/10.3389/fmicb.2024.1401259

[12].  Seng, R., Chomkatekaew, C., Tandhavanant, S., Saiprom, N., Phunpang, R., Thaipadungpanit, J., Batty, E. M., Day, N. P., Chantratita, W., West, T. E., Thomson, N. R., Parkhill, J., Chewapreecha, C., Chantratita, N., 2024, Genetic diversity, determinants, and dissemination of Burkholderia pseudomallei lineages implicated in melioidosis in northeast Thailand. Nat Commun., 15, 5699, https://doi.org/10.1101/2023.06.02.543359

[13].  Lim, Y., Vadivelu, J., Mariappan, V., Venkatraman, G., & Vellasamy, K. M. 2023, Effective Therapeutic Options for Melioidosis: Antibiotics versus Phage Therapy. Pathogens, 12(1), 11 https://doi.org/10.3390/pathogens12010011

[14].  Ogata, H., Goto, S., Sato, K., Fujobuchi, W., Bono, H., Kanehisa, M., 1999, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27, 29-34 DOI: 10.1093/nar/27.1.29

[15].  Grote, A., Hiller. K., Scheer M, et al. 2005, JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33, W526–W531, DOI: 10.1093/nar/gki376

[16].  Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., 2003, SWISS-MODEL: An automated protein homology- modeling server. Nucleic Acids Research, 31, 3381–3385, doi: 10.1093/nar/gkg520

[17].  Sivakumari, K., Rathinabai, A.F.M.C., Kaleenam, P.K., Jayaprakash, P., Srikanth, R., 2010, Molecular docking study of bark-derived components of Cinnamomum cassia on aldose reductase.   Indian J Sci Technol, 3, 1081-1088, DOI: 10.17485/ijst/2010/v3i10.8

[18].  Duverna, R., Ablordeppey, S.Y., Lamango, N.S., 2010, Biochemical and Docking Analysis of Substrate Interactions with Polyisoprenylated Methylated Protein Methyl Esterase, Curr Cancer Drug Targets, 10, 634–648 doi: 10.2174/156800910,791859443

[19].  Tamaian, R., Niculescu, V., Anghel, M., 2010, In silico Predictions for Improving permeability properties of Principal Anticancer Anthracyclines through Structural Modification. Bull UASVM Vet Med, 67, 329-336, https://doi.org/10.15835/buasvmcn-vm:67:1:5974

[20].  Muenzner, J., Trébulle, P., Agostini, F., Zauber, H., Messner, C. B., Steger, M., Kilian, C., Lau, K., Barthel, N., Lehmann, A., Textoris-Taube, K., Caudal, E., Egger, A., Amari, F., De Chiara, M., Demichev, V., Gossmann, T. I., Mülleder, M., Liti, G., Ralser, M., 2024, Natural proteome diversity links aneuploidy tolerance to protein turnover. Nature, 630, 149–157, https://doi.org/10.1038/s41586-024-07442-9

[21].  Kumar, U., Manivannan, H., Francis, A.P., Veeraraghavan, V.P., Gayathri, R., Sankaran, S.,2023, Prediction of novel natural small molecules from Schinus molle as an inhibitor of PI3K protein target in cancer cells using in silico screening. Cureus, 15(12), e50863. DOI: 10.7759/cureus.50863

[22]. Narayanaswamy, R., Prabhakaran, V.S., Al-Ansari, M.M., Al-Humaid, L.A., Tiwari, P., 2023. An In Silico Analysis of Synthetic and Natural Compounds as Inhibitors of Nitrous Oxide Reductase (N2OR) and Nitrite Reductase (NIR). Toxics, 11, 660. https://doi.org/10.3390/ toxics11080660

[23].  Zhang, C., Chen, Z., Zhang, M., Jia, S., 2023, KEGG_Extractor: An effective extraction tool for KEGG orthologs. Genes, 14(2), 386. https://doi.org/10.3390/genes14020386

[24].  Wiltgen, M., Algorithms for structure comparison and analysis: Homology Modelling of Proteins, 2019, https://doi.org/10.1016/b978-0-12-809633-8.20484-6

[25].  Stanzione, F., Giangreco, I., Cole, J.C., 2021, Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry, 60, 273–343, https://doi.org/10.1016/bs.pmch.2021.01.004

[26].  Saini, S. R., Binduhayyim, R.I.H., Vishwanath, G., Abdulkhaliq, F., Ali, A., Shashit, S.B., Rajesh, V., Doni, D., Punnoth, P.N., Seyed,A.M., Artak.H., In silico assessment of biocompatibility and toxicity: Molecular docking and dynamics simulation of PMMA-based dental materials for interim prosthetic restorations. J Material Science: Materials in Medicine, 35, 28 https://doi.org/10.1007/s10856-024-06799-7

[27].  En-Nahli, F., Hajji, H., Oua bane, M., 2023, ADMET profiling and molecular docking of pyrazole and pyrazolines derivatives as antimicrobial agents. Arabian J Chemistry, 16(11), 105262, https://doi.org/10.1016/j.arabjc.2023.105262