An Update on the Role of Omega-3 Fatty Acids in Metabolic Health and Insulin Resistance: A narrative review

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art016

Authors : Monisha Prasad, Navaneetha Krishnan S, Asha Arun

Abstract:

Insulin resistance and metabolic health are largely regulated by important pathways that omega-3 fatty acids influence. The molecular pathways by which Omega-3 fatty acids, specifically Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA), work is the main topic of concern in this narrative overview. Through modifying inflammatory responses, enhancing lipid metabolism, and impacting insulin signaling pathways, these fatty acids mainly increase insulin sensitivity. Studies have demonstrated that EPA and DHA can increase insulin sensitivity by downregulating the nuclear factor kappa B (NF-κB) pathway, reducing pro-inflammatory cytokines, and increasing the activation of peroxisome proliferator-activated receptors (PPARs). Furthermore, Omega-3s mitigate lipotoxicity and encourage the effective utilization of fatty acids as an energy source, all of which are critical for preserving insulin sensitivity. They also lessen ectopic fat accumulation. Additionally, the interaction between Omega-3s and membrane phospholipids enhances insulin receptor signaling and activity. Notwithstanding these advantages, further research is necessary to fully understand the unique impacts of certain Omega-3s, such as Alpha-Linolenic Acid (ALA), on these pathways as well as how they might interact with other dietary components and gut flora. We can more effectively utilize the therapeutic potential of omega-3 fatty acids to enhance metabolic health and combat insulin resistance by clarifying these pathways.

References:

[1].  Chatterjee, S., Khunti, K., & Davies, M. J., 2017, Type 2 diabetes. Lancet, 389(10085), 2239–2251, https://doi.org/10.1016/S0140-6736(17)30058-2

[2].  Rajendran, S., Mishra, S., Madhavanpillai, M., & G, V., 2022, Association of hemoglobin glycation index with cardiovascular risk factors in non-diabetic adults: A cross-sectional study. Diabetes & Metabolic Syndrome, 16(9), 102592, https://doi.org/10.1016/j.dsx.2022.102592

[3].  Sinha, S., Haque, M., Lugova, H., & Kumar, S., 2023, The effect of Omega-3 fatty acids on insulin resistance. Life, 13(6), 1322, https://doi.org/10.3390/life13061322

[4].  Natto, Z. S., Yaghmoor, W., Alshaeri, H. K., & Van Dyke, T. E., 2019, Omega-3 fatty acids effects on inflammatory biomarkers and lipid profiles among diabetic and cardiovascular disease patients: A systematic review and meta-analysis. Scientific Reports, 9(1), 18867, https://doi.org/10.1038/s41598-019-54535-x

[5].  Yaribeygi, H., Maleki, M., Jamialahmadi, T., Shakhpazyan, N. K., Kesharwani, P., & Sahebkar, A., 2023, Nanoparticles with SGLT2 inhibitory activity: Possible benefits and future. Diabetes & Metabolic Syndrome, 17(10), 102869, https://doi.org/10.1016/j.dsx.2023.102869

[6].  Samuel, V. T., Petersen, K. F., & Shulman, G. I., 2010, Lipid-induced insulin resistance: Unravelling the mechanism. Lancet, 375(9733), 2267–2277, https://doi.org/10.1016/S0140-6736(10)60408-4

[7].  Winn, N. C., Pettit-Mee, R., Walsh, L. K., Restaino, R. M., Ready, S. T., Padilla, J., & Kanaley, J. A., 2019, Metabolic implications of diet and energy intake during physical inactivity. Medicine and Science in Sports and Exercise, 51(5), 995–1005, https://doi.org/10.1249/MSS.0000000000001892

[8].  Rahman, M. S., Hossain, K. S., Das, S., Kundu, S., Adegoke, E. O., Rahman, M. A., Hannan, M. A., Uddin, M. J., & Pang, M. G., 2021, Role of insulin in health and disease: An update. International Journal of Molecular Sciences, 22(12), 6403, https://doi.org/10.3390/ijms22126403

[9].  Natesan, V., & Kim, S. J., 2021, Lipid metabolism, disorders and therapeutic drugs - Review. Biomolecules & Therapeutics, 29(6), 596–604, https://doi.org/10.4062/biomolther.2021.122

[10]. Hardy, O. T., Czech, M. P., & Corvera, S., 2012, What causes the insulin resistance underlying obesity? Current Opinion in Endocrinology, Diabetes, and Obesity, 19(2), 81–87, https://doi.org/10.1097/MED.0b013e3283514e13

[11]. Rekha, K., Venkidasamy, B., Samynathan, R., Nagella, P., Rebezov, M., Khayrullin, M., Ponomarev, E., Bouyahya, A., Sarkar, T., Shariati, M. A., Thiruvengadam, M., & Simal-Gandara, J., 2024, Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Critical Reviews in Food Science and Nutrition, 64(9), 2461–2489, https://doi.org/10.1080/10408398.2022.2124231

[12]. Cholewski, M., Tomczykowa, M., & Tomczyk, M., 2018, A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients, 10(11), 1662, https://doi.org/10.3390/nu10111662

[13]. Rodriguez-Leyva, D., Dupasquier, C. M., McCullough, R., & Pierce, G. N., 2010, The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. The Canadian Journal of Cardiology, 26(9), 489–496, https://doi.org/10.1016/s0828-282x(10)70455-4

[14]. Weitz, D., Weintraub, H., Fisher, E., & Schwartzbard, A. Z., 2010, Fish oil for the treatment of cardiovascular disease. Cardiology in Review, 18(5), 258–263, https://doi.org/10.1097/CRD.0b013e3181ea0de0

[15]. Bradbury, J., 2011, Docosahexaenoic acid (DHA): An ancient nutrient for the modern human brain. Nutrients, 3(5), 529–554, https://doi.org/10.3390/nu3050529

[16]. Calder, P. C., 2010, Omega-3 fatty acids and inflammatory processes. Nutrients, 2(3), 355–374, https://doi.org/10.3390/nu2030355

[17]. Samanta, S., Sarkar, T., Chakraborty, R., Rebezov, M., Shariati, M. A., Thiruvengadam, M., & Rengasamy, K. R. R., 2022, Dark chocolate: An overview of its biological activity, processing, and fortification approaches. Current Research in Food Science, 5, 1916–1943, https://doi.org/10.1016/j.crfs.2022.10.017

[18]. Gharraee, N., Wang, Z., Pflum, A., Medina-Hernandez, D., Herrington, D., Zhu, X., & Meléndez, G. C., 2022, Eicosapentaenoic acid ameliorates cardiac fibrosis and tissue inflammation in spontaneously hypertensive rats. Journal of Lipid Research, 63(11), 100292, https://doi.org/10.1016/j.jlr.2022.100292

[19]. Chen, C., Yang, Y., Yu, X., Hu, S., & Shao, S., 2017, Association between omega-3 fatty acids consumption and the risk of type 2 diabetes: A meta-analysis of cohort studies. Journal of Diabetes Investigation, 8(4), 480–488, https://doi.org/10.1111/jdi.12614

[20]. Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W., & Xu, H., 2022, Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduction and Targeted Therapy, 7(1), 216, https://doi.org/10.1038/s41392-022-01073-0

[21]. Qiu, Y. Y., Zhang, J., Zeng, F. Y., & Zhu, Y. Z., 2023, Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacological Research, 192, 106786, https://doi.org/10.1016/j.phrs.2023.106786

[22]. Boopathi, S., Haridevamuthu, B., Mendonca, E., Gandhi, A., Priya, P. S., Alkahtani, S., Al-Johani, N. S., Arokiyaraj, S., Guru, A., Arockiaraj, J., & Malafaia, G., 2023, Combined effects of a high-fat diet and polyethylene microplastic exposure induce impaired lipid metabolism and locomotor behavior in larvae and adult zebrafish. The Science of the Total Environment, 902, 165988, https://doi.org/10.1016/j.scitotenv.2023.165988

[23]. Swanson, D., Block, R., & Mousa, S. A., 2012. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition (Bethesda, Md.), 3(1), 1–7, https://doi.org/10.3945/an.111.000893

[24]. Calder, P. C., 2013, Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645–662, https://doi.org/10.1111/j.1365-2125.2012.04374.x

[25]. Fazelian, S., Moradi, F., Agah, S., Hoseini, A., Heydari, H., Morvaridzadeh, M., Omidi, A., Pizarro, A. B., Ghafouri, A., & Heshmati, J., 2021, Effect of omega-3 fatty acids supplementation on cardio-metabolic and oxidative stress parameters in patients with chronic kidney disease: A systematic review and meta-analysis. BMC Nephrology, 22(1), 160, https://doi.org/10.1186/s12882-021-02351-9

[26]. Calder, P. C., 2015, Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta, 1851(4), 469–484, https://doi.org/10.1016/j.bbalip.2014.08.010

[27]. Wen, J., Satyanarayanan, S. K., Li, A., Yan, L., Zhao, Z., Yuan, Q., Su, K. P., & Su, H., 2024, Unraveling the impact of omega-3 polyunsaturated fatty acids on blood-brain barrier (BBB) integrity and glymphatic function. Brain, Behavior, and Immunity, 115, 335–355, https://doi.org/10.1016/j.bbi.2023.10.018

[28]. Elisia, I., Yeung, M., Kowalski, S., Wong, J., Rafiei, H., Dyer, R. A., Atkar-Khattra, S., Lam, S., & Krystal, G., 2022, Omega 3 supplementation reduces C-reactive protein, prostaglandin E2 and the granulocyte/lymphocyte ratio in heavy smokers: An open-label randomized crossover trial. Frontiers in Nutrition, 9, 1051418, https://doi.org/10.3389/fnut.2022.1051418

[29]. Allam-Ndoul, B., Guénard, F., Barbier, O., & Vohl, M. C., 2017, Effect of different concentrations of omega-3 fatty acids on stimulated THP-1 macrophages. Genes & Nutrition, 12, 7, https://doi.org/10.1186/s12263-017-0554-6

[30]. Flock, M. R., Skulas-Ray, A. C., Harris, W. S., Gaugler, T. L., Fleming, J. A., & Kris-Etherton, P. M, 2014, Effects of supplemental long-chain omega-3 fatty acids and erythrocyte membrane fatty acid content on circulating inflammatory markers in a randomized controlled trial of healthy adults. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 91(4), 161–168, https://doi.org/10.1016/j.plefa.2014.07.006

[31]. Indian Council of Medical Research & National Institute of Nutrition, 2024, Dietary Guidelines for Indians, ICMR-NIN. Available at https://main.icmr.nic.in/sites/default/files/upload_documents/DGI_07th_May_2024_fin.pdf

[32]. Office of Dietary Supplements. (n.d.). Omega-3 fatty acids - Health professional. National Institutes of Health, https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/

[33]. Mason, R. P., & Sherratt, S. C. R., 2017, Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits. Biochemical and Biophysical Research Communications, 483(1), 425–429, https://doi.org/10.1016/j.bbrc.2016.12.127

[34]. Asghari, K. M., Saleh, P., Salekzamani, Y., Dolatkhah, N., Aghamohammadzadeh, N., & Hashemian, M., 2024, The effect of curcumin and high-content eicosapentaenoic acid supplementations in type 2 diabetes mellitus patients: A double-blinded randomized clinical trial. Nutrition & Diabetes, 14(1), 14, https://doi.org/10.1038/s41387-024-00274-6