m6A RNA Methylation and Cancer Progression: Pathogenesis, Implications, and Therapeutic Potential

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art015

Authors : Geetha Shanmugam, Abin Mahmood Nizar

Abstract:

N6-methyladenosine (m6A) is a prominent internal modification of eukaryotic messenger RNA (mRNA) and has garnered significant attention due to its regulatory role in various biological processes, particularly in cancer. As a dynamic and reversible modification, m6A is orchestrated by three key players: Writers, primarily methyltransferases like METTL3 and METTL14, add m6A marks to mRNA, influencing processes such as RNA stability and translation. Erasers, such as FTO and ALKBH5, remove these marks, enabling the fine-tuning of mRNA functions. Readers, including YTH domain-containing proteins (e.g., YTHDF1, YTHDF2), recognize and bind to m6A-modified mRNA, directing its fate in terms of degradation, translation efficiency, or cellular localization. In cancer, m6A modifications have been implicated in promoting tumor progression by affecting gene expression at the post-transcriptional level. The dysregulation of m6A machinery can lead to aberrant expression of oncogenes or tumor suppressors, thereby driving oncogenesis Furthermore, m6A modifications play a crucial role in modulating the tumor microenvironment (TME) and immune evasion. By altering the expression of cytokines, chemokines, and immune checkpoint molecules, m6A can influence immune cell infiltration and activation, impacting the anti-tumor immune response. This modulation of the TME not only aids in tumor progression but also presents challenges and opportunities for cancer immunotherapy. Given its profound impact on cancer biology, targeting the m6A machinery holds therapeutic potential. Small molecules or inhibitors designed to modulate m6A writers, erasers, or readers could offer new avenues for cancer treatment, making m6A a promising target in the fight against cancer.

References:

[1].  Ji, P., Wang, X., Xie, N., & Li, Y., 2018, N6-Methyladenosine in RNA and DNA: An epitranscriptomic and epigenetic player implicated in determination of stem cell fate. Stem Cells International, 2018, 3256524., https://doi.org/10.1155/2018/3256524

[2].  Yu, S., Li, X., Liu, S., Yang, R., Liu, X., & Wu, S., 2019, N6-Methyladenosine: A novel RNA imprint in human cancer. Frontiers in Oncology9, 1407. https://doi.org/10.3389/fonc.2019.01407

[3].  Deng, X., Su, R., Weng, H., Huang, H., Li, Z., & Chen, J. 2018, RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research28(5), 507–517. https://doi.org/10.1038/s41422-018-0034-6

[4].  Zhang, S., 2018, Mechanism of N6-methyladenosine modification and its emerging role in cancer. Pharmacology & Therapeutics, 189, 173–183. https://doi.org/10.1016/j.pharmthera.2018.04.011

[5].  Dang, Q., Shao, B., Zhou, Q., Chen, C., Guo, Y., Wang, G., Liu, J., Kan, Q., Yuan, W., & Sun, Z. 2021, RNA N6-Methyladenosine in cancer metastasis: Roles, mechanisms, and applications. Frontiers in Oncology11, 681781. https://doi.org/10.3389/fonc.2021.681781

[6].  An, Y., & Duan, H., 2022, The role of m6A RNA methylation in cancer metabolism. Molecular Cancer, 21(1), 14. https://doi.org/10.1186/s12943-022-01500-4

[7].  Tan, F., Zhao, M., Xiong, F., Wang, Y., Zhang, S., Gong, Z., Li, X., He, Y., Shi, L., Wang, F., Xiang, B., Zhou, M., Li, X., Li, Y., Li, G., Zeng, Z., Xiong, W., & Guo, C., 2021, N6-Methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. Journal of Experimental & Clinical Cancer Research: CR40(1), 146. https://doi.org/10.1186/s13046-021-01952-4

[8].  Zheng, S., Han, H., & Lin, S., 2022, N6-Methyladenosine (m6A) RNA modification in tumor immunity. Cancer Biology & Medicine19(4), 385–397. Advance online publication. https://doi.org/10.20892/j.issn.2095-3941.2021.0534

[9].  Liu, Z., Gao, L., Cheng, L., Lv, G., Sun, B., Wang, G., & Tang, Q., 2023, The roles of N6-Methyladenosine and its target regulatory noncoding RNAs in tumors: classification, mechanisms, and potential therapeutic implications. Experimental & Molecular Medicine55(3), 487–501. https://doi.org/10.1038/s12276-023-00944-y

[10]. Wang, J., Wang, J., Gu, Q., Ma, Y., Yang, Y., Zhu, J., & Zhang, Q., 2020, The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell International20, 347. https://doi.org/10.1186/s12935-020-01450-1

[11]. Chen, Z., Hu, Y., Jin, L., Yang, F., Ding, H., Zhang, L., Li, L., & Pan, T., 2022, The emerging role of n6-methyladenosine RNA methylation as regulators in cancer therapy and drug resistance. Frontiers in Pharmacology13, 873030. https://doi.org/10.3389/fphar.2022.873030

[12]. Zheng, W., Dong, X., Zhao, Y., Wang, S., Jiang, H., Zhang, M., Zheng, X., & Gu, M., 2019, Multiple functions and mechanisms underlying the role of METTL3 in Human Cancers. Frontiers in Oncology9, 1403. https://doi.org/10.3389/fonc.2019.01403

[13]. Lin, S., Liu, J., Jiang, W., Wang, P., Sun, C., Wang, X., Chen, Y., & Wang, H., 2019, METTL3 Promotes the proliferation and mobility of gastric cancer cells. Open Medicine (Warsaw, Poland)14, 25–31. https://doi.org/10.1515/med-2019-0005

[14]. Pan, F., Lin, X. R., Hao, L. P., Chu, X. Y., Wan, H. J., & Wang, R., 2021, The role of RNA methyltransferase METTL3 in hepatocellular carcinoma: results and perspectives. Frontiers in Cell and Developmental Biology9, 674919. https://doi.org/10.3389/fcell.2021.674919

[15]. Chen, X. Y., Zhang, J., & Zhu, J. S., 2019, The role of m6A RNA methylation in human cancer. Molecular Cancer18(1), 103. https://doi.org/10.1186/s12943-019-1033-z

[16]. Yang, S., Wei, J., Cui, Y. H., Park, G., Shah, P., Deng, Y., Aplin, A. E., Lu, Z., Hwang, S., He, C., & He, Y. Y., 2019, m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nature Communications10(1), 2782. https://doi.org/10.1038/s41467-019-10669-0

[17]. Wang, T., Kong, S., Tao, M., & Ju, S., 2020, The potential role of RNA N6-methyladenosine in Cancer progression. Molecular Cancer19(1), 88. https://doi.org/10.1186/s12943-020-01204-7

[18]. Quan, C., Belaydi, O., Hu, J., Li, H., Yu, A., Liu, P., Yi, Z., Qiu, D., Ren, W., Ma, H., Gong, G., Ou, Z., Chen, M., Sun, Y., Chen, J., & Zu, X., 2021, N6-Methyladenosine in cancer immunotherapy: an undervalued therapeutic target. Frontiers in Immunology12, 697026. https://doi.org/10.3389/fimmu.2021.697026

[19]. Tan, F., Zhao, M., Xiong, F., Wang, Y., Zhang, S., Gong, Z., Li, X., He, Y., Shi, L., Wang, F., Xiang, B., Zhou, M., Li, X., Li, Y., Li, G., Zeng, Z., Xiong, W., & Guo, C., 2021, N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. Journal of Experimental & Clinical Cancer Research CR40(1), 146, https://doi.org/10.1186/s13046-021-01952-4

[20]. Zhou, H., Sun, Q., Feng, M., Gao, Z., Jia, S., Cao, L., Yu, X., Gao, S., Wu, H., & Li, K., 2023, Regulatory mechanisms and therapeutic implications of insulin-like growth factor 2 mRNA-binding proteins, the emerging crucial m6A regulators of tumors. Theranostics13(12), 4247–4265. https://doi.org/10.7150/thno.86528

[21]. Zhu, Y., Li, J., Yang, H., Yang, X., Zhang, Y., Yu, X., Li, Y., Chen, G., & Yang, Z., 2023, The potential role of m6A reader YTHDF1 as diagnostic biomarker and the signaling pathways in tumorigenesis and metastasis in pan-cancer, Cell Death Discovery9(1), 34. https://doi.org/10.1038/s41420-023-01321-4

[22]. Zhao, W., Cui, Y., Liu, L., Ma, X., Qi, X., Wang, Y., Liu, Z., Ma, S., Liu, J., & Wu, J. 2020, METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-myc stability via YTHDF1-Mediated m6A Modification. Molecular Therapy. Nucleic Acids20, 1–12. https://doi.org/10.1016/j.omtn.2020.01.033

[23]. Yang, D. D., Chen, Z. H., Yu, K., Lu, J. H., Wu, Q. N., Wang, Y., Ju, H. Q., Xu, R. H., Liu, Z. X., & Zeng, Z. L., 2020, METTL3 promotes the progression of gastric cancer via targeting the MYC pathway. frontiers in Oncology10, 115. https://doi.org/10.3389/fonc.2020.00115

[24]. Tang, S., Ning, Q., Yang, L., Mo, Z., & Tang, S., 2020, Mechanisms of immune escape in the cancer immune cycle. International Immunopharmacology86, 106700, https://doi.org/10.1016/j.intimp.2020.106700

[25]. Na, H. Y., Park, Y., Nam, S. K., Lee, K. S., Oh, H. K., Kim, D. W., Kang, S. B., Kim, W. H., & Lee, H. S. 2021, Expression of human leukocyte antigen class I and β2-microglobulin in colorectal cancer and its prognostic impact. Cancer Science112(1), 91–100, https://doi.org/10.1111/cas.14723

[26]. Wang, L., Cao, H., Zhong, Y., Ji, P., & Chen, F. 2022, The role of m6A regulator-mediated methylation modification and tumor microenvironment infiltration in glioblastoma multiforme. Frontiers in Cell and Developmental Biology10, 842835. https://doi.org/10.3389/fcell.2022.842835

[27]. Meijing, Z., Tianhang, L., & Biao, Y. 2022, N6-Methyladenosine modification patterns and tumor microenvironment immune characteristics associated with clinical prognosis analysis in stomach adenocarcinoma. Frontiers in Cell and Developmental Biology10, 913307. https://doi.org/10.3389/fcell.2022.913307

[28]. Arumugam, P., Jayaseelan V. P., 2022, 15P N6-Methyladenosine modification of YY1 mRNA promotes cervical cancer tumorigenesis. Annals of Oncology, 33, 388. https://www.annalsofoncology.org/article/S0923-7534(22)00718-9/fulltext

[29]. Krishnamoorthy, H. S., Kannan, B., Ganapathy, D., Jayaseelan, V. P., & Arumugam, P., 2023, Decreased expression of the m6A RNA methyltransferase METTL3 is associated with residual ridge resorption. Journal of Oral Biology and Craniofacial Research13(5), 563–566. https://doi.org/10.1016/j.jobcr.2023.07.003

[30]. Krishnamoorthy, H. S., Kannan, B., Ganapathy, D., Jayaseelan, V. P., & Arumugam, P. 2023, Dysregulated m6A methylation modification is associated with human peri-implantitis - A pilot study. Journal of Stomatology, Oral and Maxillofacial Surgery124(6S), 101550. https://doi.org/10.1016/j.jormas.2023.101550