[1]. Ji, P., Wang, X., Xie, N., & Li, Y., 2018,
N6-Methyladenosine in RNA and DNA: An epitranscriptomic and epigenetic player implicated
in determination of stem cell fate. Stem Cells International, 2018,
3256524., https://doi.org/10.1155/2018/3256524
[2]. Yu, S., Li, X., Liu, S., Yang, R., Liu, X., & Wu, S.,
2019, N6-Methyladenosine: A novel RNA imprint in human cancer. Frontiers
in Oncology, 9, 1407. https://doi.org/10.3389/fonc.2019.01407
[3]. Deng, X., Su, R., Weng, H., Huang, H., Li, Z., & Chen, J.
2018, RNA N6-methyladenosine modification in cancers: current status
and perspectives. Cell Research, 28(5), 507–517. https://doi.org/10.1038/s41422-018-0034-6
[4]. Zhang, S., 2018, Mechanism of N6-methyladenosine
modification and its emerging role in cancer. Pharmacology & Therapeutics, 189,
173–183. https://doi.org/10.1016/j.pharmthera.2018.04.011
[5]. Dang, Q., Shao, B., Zhou, Q., Chen, C., Guo, Y., Wang, G.,
Liu, J., Kan, Q., Yuan, W., & Sun, Z. 2021, RNA N6-Methyladenosine
in cancer metastasis: Roles, mechanisms, and applications. Frontiers in
Oncology, 11, 681781. https://doi.org/10.3389/fonc.2021.681781
[6]. An, Y., & Duan, H., 2022, The role of m6A RNA methylation
in cancer metabolism. Molecular Cancer, 21(1), 14. https://doi.org/10.1186/s12943-022-01500-4
[7]. Tan, F., Zhao, M., Xiong, F., Wang, Y., Zhang, S., Gong, Z.,
Li, X., He, Y., Shi, L., Wang, F., Xiang, B., Zhou, M., Li, X., Li, Y., Li, G.,
Zeng, Z., Xiong, W., & Guo, C., 2021, N6-Methyladenosine-dependent
signalling in cancer progression and insights into cancer therapies. Journal
of Experimental & Clinical Cancer Research: CR, 40(1), 146.
https://doi.org/10.1186/s13046-021-01952-4
[8]. Zheng, S., Han, H., & Lin, S., 2022, N6-Methyladenosine
(m6A) RNA modification in tumor immunity. Cancer Biology
& Medicine, 19(4), 385–397. Advance online publication. https://doi.org/10.20892/j.issn.2095-3941.2021.0534
[9]. Liu, Z., Gao, L., Cheng, L., Lv, G., Sun, B., Wang, G., &
Tang, Q., 2023, The roles of N6-Methyladenosine and its target regulatory
noncoding RNAs in tumors: classification, mechanisms, and potential therapeutic
implications. Experimental & Molecular Medicine, 55(3),
487–501. https://doi.org/10.1038/s12276-023-00944-y
[10]. Wang, J., Wang, J., Gu, Q., Ma, Y., Yang, Y., Zhu, J., &
Zhang, Q., 2020, The biological function of m6A demethylase ALKBH5 and its role
in human disease. Cancer Cell International, 20, 347. https://doi.org/10.1186/s12935-020-01450-1
[11]. Chen, Z., Hu, Y., Jin, L., Yang, F., Ding, H., Zhang, L., Li,
L., & Pan, T., 2022, The emerging role of n6-methyladenosine RNA methylation
as regulators in cancer therapy and drug resistance. Frontiers in Pharmacology, 13,
873030. https://doi.org/10.3389/fphar.2022.873030
[12]. Zheng, W., Dong, X., Zhao, Y., Wang, S., Jiang, H., Zhang,
M., Zheng, X., & Gu, M., 2019, Multiple functions and mechanisms underlying
the role of METTL3 in Human Cancers. Frontiers in Oncology, 9,
1403. https://doi.org/10.3389/fonc.2019.01403
[13]. Lin, S., Liu, J., Jiang, W., Wang, P., Sun, C., Wang, X.,
Chen, Y., & Wang, H., 2019, METTL3 Promotes the proliferation and mobility
of gastric cancer cells. Open Medicine (Warsaw, Poland), 14,
25–31. https://doi.org/10.1515/med-2019-0005
[14]. Pan, F., Lin, X. R., Hao, L. P., Chu, X. Y., Wan, H. J.,
& Wang, R., 2021, The role of RNA methyltransferase METTL3 in hepatocellular
carcinoma: results and perspectives. Frontiers in Cell and Developmental
Biology, 9, 674919. https://doi.org/10.3389/fcell.2021.674919
[15]. Chen, X. Y., Zhang, J., & Zhu, J. S., 2019, The role of m6A
RNA methylation in human cancer. Molecular Cancer, 18(1),
103. https://doi.org/10.1186/s12943-019-1033-z
[16]. Yang, S., Wei, J., Cui, Y. H., Park, G., Shah, P., Deng, Y.,
Aplin, A. E., Lu, Z., Hwang, S., He, C., & He, Y. Y., 2019, m6A
mRNA demethylase FTO regulates melanoma tumorigenicity and response to
anti-PD-1 blockade. Nature Communications, 10(1), 2782.
https://doi.org/10.1038/s41467-019-10669-0
[17]. Wang, T., Kong, S., Tao, M., & Ju, S., 2020, The
potential role of RNA N6-methyladenosine in Cancer progression. Molecular
Cancer, 19(1), 88. https://doi.org/10.1186/s12943-020-01204-7
[18]. Quan, C., Belaydi, O., Hu, J., Li, H., Yu, A., Liu, P., Yi,
Z., Qiu, D., Ren, W., Ma, H., Gong, G., Ou, Z., Chen, M., Sun, Y., Chen, J.,
& Zu, X., 2021, N6-Methyladenosine in cancer immunotherapy: an
undervalued therapeutic target. Frontiers in Immunology, 12,
697026. https://doi.org/10.3389/fimmu.2021.697026
[19]. Tan, F., Zhao, M., Xiong, F., Wang, Y., Zhang, S., Gong, Z.,
Li, X., He, Y., Shi, L., Wang, F., Xiang, B., Zhou, M., Li, X., Li, Y., Li, G.,
Zeng, Z., Xiong, W., & Guo, C., 2021, N6-methyladenosine-dependent
signalling in cancer progression and insights into cancer therapies. Journal
of Experimental & Clinical Cancer Research CR, 40(1), 146, https://doi.org/10.1186/s13046-021-01952-4
[20]. Zhou, H., Sun, Q., Feng, M., Gao, Z., Jia, S., Cao, L., Yu,
X., Gao, S., Wu, H., & Li, K., 2023, Regulatory mechanisms and therapeutic
implications of insulin-like growth factor 2 mRNA-binding proteins, the
emerging crucial m6A regulators of tumors. Theranostics, 13(12),
4247–4265. https://doi.org/10.7150/thno.86528
[21]. Zhu, Y., Li, J., Yang, H., Yang, X., Zhang, Y., Yu, X., Li,
Y., Chen, G., & Yang, Z., 2023, The potential role of m6A reader YTHDF1 as
diagnostic biomarker and the signaling pathways in tumorigenesis and metastasis
in pan-cancer, Cell Death Discovery, 9(1), 34. https://doi.org/10.1038/s41420-023-01321-4
[22]. Zhao, W., Cui, Y., Liu, L., Ma, X., Qi, X., Wang, Y., Liu,
Z., Ma, S., Liu, J., & Wu, J. 2020, METTL3 facilitates oral squamous cell
carcinoma tumorigenesis by enhancing c-myc stability via YTHDF1-Mediated m6A
Modification. Molecular Therapy. Nucleic Acids, 20,
1–12. https://doi.org/10.1016/j.omtn.2020.01.033
[23]. Yang, D. D., Chen, Z. H., Yu, K., Lu, J. H., Wu, Q. N., Wang,
Y., Ju, H. Q., Xu, R. H., Liu, Z. X., & Zeng, Z. L., 2020, METTL3 promotes
the progression of gastric cancer via targeting the MYC pathway. frontiers
in Oncology, 10, 115. https://doi.org/10.3389/fonc.2020.00115
[24]. Tang, S., Ning, Q., Yang, L., Mo, Z., & Tang, S., 2020,
Mechanisms of immune escape in the cancer immune cycle. International Immunopharmacology, 86,
106700, https://doi.org/10.1016/j.intimp.2020.106700
[25]. Na, H. Y., Park, Y., Nam, S. K., Lee, K. S., Oh, H. K., Kim,
D. W., Kang, S. B., Kim, W. H., & Lee, H. S. 2021, Expression of human
leukocyte antigen class I and β2-microglobulin in colorectal cancer and its
prognostic impact. Cancer Science, 112(1), 91–100, https://doi.org/10.1111/cas.14723
[26]. Wang, L., Cao, H., Zhong, Y., Ji, P., & Chen, F. 2022,
The role of m6A regulator-mediated methylation modification and tumor
microenvironment infiltration in glioblastoma multiforme. Frontiers in Cell
and Developmental Biology, 10, 842835. https://doi.org/10.3389/fcell.2022.842835
[27]. Meijing, Z., Tianhang, L., & Biao, Y. 2022,
N6-Methyladenosine modification patterns and tumor microenvironment immune characteristics
associated with clinical prognosis analysis in stomach adenocarcinoma. Frontiers
in Cell and Developmental Biology, 10, 913307. https://doi.org/10.3389/fcell.2022.913307
[28]. Arumugam,
P., Jayaseelan V. P., 2022, 15P
N6-Methyladenosine modification of YY1 mRNA promotes cervical cancer
tumorigenesis. Annals of Oncology, 33, 388. https://www.annalsofoncology.org/article/S0923-7534(22)00718-9/fulltext
[29]. Krishnamoorthy, H. S., Kannan, B., Ganapathy, D., Jayaseelan,
V. P., & Arumugam, P., 2023, Decreased expression of the m6A RNA
methyltransferase METTL3 is associated with residual ridge resorption. Journal
of Oral Biology and Craniofacial Research, 13(5), 563–566. https://doi.org/10.1016/j.jobcr.2023.07.003
[30]. Krishnamoorthy, H. S., Kannan, B., Ganapathy, D., Jayaseelan,
V. P., & Arumugam, P. 2023, Dysregulated m6A methylation modification is
associated with human peri-implantitis - A pilot study. Journal of Stomatology,
Oral and Maxillofacial Surgery, 124(6S), 101550. https://doi.org/10.1016/j.jormas.2023.101550