MicroRNAs and Apoptosis Signaling Pathways in Breast Cancer: From Molecular Insights to Clinical Applications

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.05.Art008

Authors : Prakash Balu, Maghimaa, M, Yamini Priya Deepthimahanthi, Deepthi V, Ling Shing Wong, Kumar Krishnan, Manjunathan J, Saravanan, R

Abstract:

Breast cancer represents a global health concern, necessitating a deeper understanding of the intricate mechanisms underlying its pathogenesis and therapy resistance. This comprehensive review article explores the pivotal roles of microRNAs (miRNAs) and apoptosis signaling pathways in breast cancer biology. MiRNAs, as essential post-transcriptional regulators, modulate gene expression and play a central role in apoptosis regulation. We examine their involvement in breast cancer oncogenesis, metastasis, and therapy resistance, highlighting pro-apoptotic and anti-apoptotic miRNAs. Additionally, we delve into the core components of the apoptosis pathway, including initiator and executioner caspases and Bcl-2 family members, emphasizing their relevance in breast cancer. Further, we explore the crosstalk between miRNAs and major signaling pathways (PI3K/AKT, NF-κB, and p53) and discuss their clinical implications, including diagnostics, prognostics, and therapeutic interventions. While offering promising avenues for breast cancer management, this review also identifies research gaps and challenges in translating miRNA and pathway-based knowledge into clinical practice.

References:

[1].  Savarese, G., Becher, P. M., Lund, L. H., Seferovic, P., Rosano, G.M., Coats, A. J., 2022. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovascular Research, 118(17), pp.3272-3287.

[2].  Anwar, S., Yokota, T., 2023. Navigating the complex landscape of fibrodysplasia ossificans progressiva: From current paradigms to therapeutic frontiers. Genes, 14(12), 2162.

[3].  Mirzayans, R., Murray, D., 2022. What are the reasons for continuing failures in cancer therapy? Are misleading/inappropriate preclinical assays to be blamed? Might some modern therapies cause more harm than benefit?  International Journal of Molecular Sciences, 23(21), 13217.

[4].  Griffin, K. H., Fok, S. W., Kent Leach, J., 2022. Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regenerative Medicine, 7(1), 70.

[5].  Rahman, M. M., Islam, M. R., Shohag, S., Ahasan, M. T., Sarkar, N., Khan, H., Rauf, A., 2022. Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomedicine & Pharmacotherapy, 149, 112898.

[6].  Asghariazar, V., Kadkhodayi, M., Sarailoo, M., Jolfayi, A. G., Baradaran, B., 2023. MicroRNA-143 as a potential tumor suppressor in cancer: An insight into molecular targets and signaling pathways. Pathology-Research and Practice, 154792.

[7].  Pekarek, L., Torres-Carranza, D., Fraile-Martinez, O., García-Montero, C., Pekarek, T., Saez, M. A., Ortega, M. A., 2023. An overview of the role of MicroRNAs on carcinogenesis: a focus on cell cycle, angiogenesis and metastasis. International Journal of Molecular Sciences, 24(8), 7268.

[8].  Cumming, T., Levayer, R., 2024. Toward a predictive understanding of epithelial cell death. In Seminars in Cell & Developmental Biology 156, 44-57. Academic Press.

[9].  Al-Harbi, L. N., Al-Shammari, G. M., Subash-Babu, P., Mohammed, M. A., Alkreadees, R. A., Yagoub, A. E. A., 2022. Cinchona officinalis phytochemicals-loaded iron oxide nanoparticles induce cytotoxicity and stimulate apoptosis in MCF-7 human breast cancer cells. Nanomaterials, 12(19), 3393.

[10]. Sarosiek, K. A., Wood, K. C., 2023. Endogenous and imposed determinants of apoptotic vulnerabilities in cancer. Trends in Cancer, 9(2), 96-110.

[11]. Winder, M. L., Campbell, K. J., 2022. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle, 21(14), 1439-1455.

[12]. Martelli, A., Omrani, M., Zarghooni, M., Citi, V., Brogi, S., Calderone, V., Ghavami, S., 2022. New visions on natural products and cancer therapy: autophagy and related regulatory pathways. Cancers, 14(23), 5839.

[13]. Hashemi, M., Mirdamadi, M. S. A., Talebi, Y., Khaniabad, N., Banaei, G., Daneii, P., Khan, H., 2023. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacological Research, 187, 106568.

[14]. Huang, Y., Hong, W., Wei, X., 2022. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129.

[15]. Doghish, A. S., Abulsoud, A. I., Elshaer, S. S., Abdelmaksoud, N. M., Zaki, M. B., El-Mahdy, H. A., Elsakka, E. G., 2023. miRNAs as Cornerstones in Chronic Lymphocytic Leukemia Pathogenesis and Therapeutic Resistance–An emphasis on the interaction of signaling pathways. Pathology-Research and Practice, 243, 154363.

[16]. Sweef, O., Zaabout, E., Bakheet, A., Halawa, M., Gad, I., Akela, M., Furuta, S., 2023. Unraveling therapeutic opportunities and the diagnostic potential of microRNAs for human lung cancer. Pharmaceutics, 15(8), 2061.

[17]. Li, C., Weng, S., He, J., 2019. WSSV–host interaction: Host response and immune evasion. Fish & Shellfish Immunology, 84, 558-571.

[18]. Tavares, N. T., Henrique, R., Bagrodia, A., Jerónimo, C., Lobo, J., 2023. A stroll through the present and future of testicular germ cell tumour biomarkers. Expert Review of Molecular Diagnostics, 23(5), 405-418.

[19]. Sastri, K. T., Gupta, N. V., Kannan, A., Balamuralidhara, V., Ramkishan, A., 2022. Potential nanocarrier-mediated miRNA-based therapy approaches for multiple sclerosis. Drug Discovery Today, 27(11), 103357.

[20]. Rossi, M., Steklov, M., Huberty, F., Nguyen, T., Marijsse, J., Jacques-Hespel, C., Breman, E., 2023. Efficient shRNA-based knockdown of multiple target genes for cell therapy using a chimeric miRNA cluster platform. Molecular Therapy-Nucleic Acids, 34.

[21]. Swain, S. S., Pati, S., Hussain, T., 2022. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. European Journal of Medicinal Chemistry, 232, 114173.

[22]. Swain, S. S., Pati, S., Hussain, T., 2022. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. European Journal of Medicinal Chemistry, 232, 114173.

[23]. Prasanth, G., Anbumaran, P. M., Swetha, S., Krishnarajasekhar, O. R., Gangadharan, V., 2023. Medical thoracoscopy–Diagnostics of pleural effusion with indefinite etiology. Biomedicine, 43(01), 507-513.

[24]. Balusamy, S. R., Perumalsamy, H., Veerappan, K., Huq, M. A., Rajeshkumar, S., Lakshmi, T., Kim, Y. J., 2020. Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: In silico and in vitro study. BioMed research international, 2020(1), 6040727.

[25]. Tansushree, B., Magendran, J. A., 2020. Study on awareness of breast cancer among nursing students. Indian J Forensic Med Toxicol, 14, 152-7.