MicroRNAs and Apoptosis Signaling Pathways in Breast Cancer: From Molecular Insights to Clinical Applications

Abstract:
Breast cancer represents a global
health concern, necessitating a deeper understanding of the intricate
mechanisms underlying its pathogenesis and therapy resistance. This
comprehensive review article explores the pivotal roles of microRNAs (miRNAs)
and apoptosis signaling pathways in breast cancer biology. MiRNAs, as essential
post-transcriptional regulators, modulate gene expression and play a central
role in apoptosis regulation. We examine their involvement in breast cancer
oncogenesis, metastasis, and therapy resistance, highlighting pro-apoptotic and
anti-apoptotic miRNAs. Additionally, we delve into the core components of the
apoptosis pathway, including initiator and executioner caspases and Bcl-2
family members, emphasizing their relevance in breast cancer. Further, we
explore the crosstalk between miRNAs and major signaling pathways (PI3K/AKT,
NF-κB, and p53) and discuss their clinical implications, including diagnostics,
prognostics, and therapeutic interventions. While offering promising avenues
for breast cancer management, this review also identifies research gaps and
challenges in translating miRNA and pathway-based knowledge into clinical
practice.
References:
[1]. Savarese, G., Becher, P. M., Lund, L. H., Seferovic, P.,
Rosano, G.M., Coats, A. J., 2022. Global burden of heart failure: a
comprehensive and updated review of epidemiology. Cardiovascular Research, 118(17),
pp.3272-3287.
[2]. Anwar, S., Yokota, T., 2023. Navigating the complex landscape
of fibrodysplasia ossificans progressiva: From current paradigms to therapeutic
frontiers. Genes, 14(12), 2162.
[3]. Mirzayans, R., Murray, D., 2022. What are the reasons for
continuing failures in cancer therapy? Are misleading/inappropriate preclinical
assays to be blamed? Might some modern therapies cause more harm than benefit? International
Journal of Molecular Sciences, 23(21), 13217.
[4]. Griffin, K. H., Fok, S. W., Kent
Leach, J., 2022. Strategies to capitalize on cell spheroid therapeutic
potential for tissue repair and disease modeling. NPJ Regenerative
Medicine, 7(1), 70.
[5]. Rahman, M. M., Islam, M. R.,
Shohag, S., Ahasan, M. T., Sarkar, N., Khan, H., Rauf, A., 2022. Microbiome in
cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomedicine
& Pharmacotherapy, 149, 112898.
[6]. Asghariazar, V., Kadkhodayi, M., Sarailoo, M.,
Jolfayi, A. G., Baradaran, B., 2023. MicroRNA-143 as a potential tumor
suppressor in cancer: An insight into molecular targets and signaling
pathways. Pathology-Research and Practice, 154792.
[7]. Pekarek, L., Torres-Carranza, D.,
Fraile-Martinez, O., García-Montero, C., Pekarek, T., Saez, M. A., Ortega, M.
A., 2023. An overview of the role of MicroRNAs on carcinogenesis: a focus on
cell cycle, angiogenesis and metastasis. International Journal of
Molecular Sciences, 24(8), 7268.
[8]. Cumming, T., Levayer, R., 2024.
Toward a predictive understanding of epithelial cell death. In Seminars
in Cell & Developmental Biology 156, 44-57. Academic Press.
[9]. Al-Harbi, L. N., Al-Shammari, G.
M., Subash-Babu, P., Mohammed, M. A., Alkreadees, R. A., Yagoub, A. E. A.,
2022. Cinchona officinalis phytochemicals-loaded iron oxide nanoparticles
induce cytotoxicity and stimulate apoptosis in MCF-7 human breast cancer
cells. Nanomaterials, 12(19), 3393.
[10]. Sarosiek, K. A., Wood, K. C., 2023.
Endogenous and imposed determinants of apoptotic vulnerabilities in
cancer. Trends in Cancer, 9(2), 96-110.
[11]. Winder, M. L., Campbell, K. J.,
2022. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell
Cycle, 21(14), 1439-1455.
[12]. Martelli, A., Omrani, M., Zarghooni, M.,
Citi, V., Brogi, S., Calderone, V., Ghavami, S., 2022. New visions on natural
products and cancer therapy: autophagy and related regulatory pathways. Cancers, 14(23),
5839.
[13]. Hashemi, M., Mirdamadi, M. S. A.,
Talebi, Y., Khaniabad, N., Banaei, G., Daneii, P., Khan, H., 2023. Pre-clinical
and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy
response, delivery approaches and targeting agents. Pharmacological
Research, 187, 106568.
[14]. Huang, Y., Hong, W., Wei, X., 2022.
The molecular mechanisms and therapeutic strategies of EMT in tumor progression
and metastasis. Journal of Hematology & Oncology, 15(1),
129.
[15]. Doghish, A. S., Abulsoud, A. I.,
Elshaer, S. S., Abdelmaksoud, N. M., Zaki, M. B., El-Mahdy, H. A., Elsakka, E.
G., 2023. miRNAs as Cornerstones in Chronic Lymphocytic Leukemia Pathogenesis
and Therapeutic Resistance–An emphasis on the interaction of signaling
pathways. Pathology-Research and Practice, 243, 154363.
[16]. Sweef, O., Zaabout, E., Bakheet,
A., Halawa, M., Gad, I., Akela, M., Furuta, S., 2023. Unraveling therapeutic
opportunities and the diagnostic potential of microRNAs for human lung
cancer. Pharmaceutics, 15(8), 2061.
[17]. Li, C., Weng, S., He, J., 2019.
WSSV–host interaction: Host response and immune evasion. Fish & Shellfish
Immunology, 84, 558-571.
[18]. Tavares, N. T., Henrique, R.,
Bagrodia, A., Jerónimo, C., Lobo, J., 2023. A stroll through the present and
future of testicular germ cell tumour biomarkers. Expert Review of
Molecular Diagnostics, 23(5), 405-418.
[19]. Sastri, K. T., Gupta, N. V.,
Kannan, A., Balamuralidhara, V., Ramkishan, A., 2022. Potential nanocarrier-mediated
miRNA-based therapy approaches for multiple sclerosis. Drug Discovery
Today, 27(11), 103357.
[20]. Rossi, M., Steklov, M., Huberty,
F., Nguyen, T., Marijsse, J., Jacques-Hespel, C., Breman, E., 2023. Efficient
shRNA-based knockdown of multiple target genes for cell therapy using a
chimeric miRNA cluster platform. Molecular Therapy-Nucleic Acids, 34.
[21]. Swain, S. S., Pati, S., Hussain, T.,
2022. Quinoline heterocyclic containing plant and marine candidates against
drug-resistant Mycobacterium tuberculosis: A systematic drug-ability
investigation. European Journal of Medicinal Chemistry, 232,
114173.
[22]. Swain, S. S., Pati, S., Hussain,
T., 2022. Quinoline heterocyclic containing plant and marine candidates against
drug-resistant Mycobacterium tuberculosis: A systematic drug-ability
investigation. European Journal of Medicinal Chemistry, 232,
114173.
[23]. Prasanth, G., Anbumaran, P. M.,
Swetha, S., Krishnarajasekhar, O. R., Gangadharan, V., 2023. Medical
thoracoscopy–Diagnostics of pleural effusion with indefinite etiology. Biomedicine, 43(01),
507-513.
[24]. Balusamy, S. R., Perumalsamy, H.,
Veerappan, K., Huq, M. A., Rajeshkumar, S., Lakshmi, T., Kim, Y. J., 2020.
Citral induced apoptosis through modulation of key genes involved in fatty acid
biosynthesis in human prostate cancer cells: In silico and in vitro
study. BioMed research international, 2020(1), 6040727.
[25]. Tansushree, B., Magendran, J. A.,
2020. Study on awareness of breast cancer among nursing students. Indian
J Forensic Med Toxicol, 14, 152-7.