Analysis of TGF-β Gene Expression in Carboplatin Treated Lung Cancer Cells

Download Article

DOI: 10.21522/TIJPH.2013.12.04.Art094

Authors : Durairaj Sekar, Dhanraj Ganapathy, Gaurav Makrand Thoke, Ashikha Shirin Usman P P

Abstract:

Cancer, characterized by uncontrolled cell growth, remains a formidable challenge in modern medicine. Among various treatment modalities, chemotherapy, a systemic approach using drugs to impede cancer cell proliferation, is a cornerstone of cancer therapy. This study aimed to analyze the trends in TGF-β gene expression in carboplatin-treated lung cancer cell line A549. The materials and methods included an MTT assay to assess cell survivability, RNA isolation using the TRIzol method, and further analysis by RT-PCR, with data statistically analyzed using SPSS software. Results showed that TGF-β gene expression was significantly lower in the A549 cell line treated with carboplatin compared to the untreated cell line. Specifically, the treated cells exhibited a 40% reduction in TGF-β expression, a statistically significant decrease (p < 0.05). Given that TGF-β is known to promote tumorigenesis, the observed reduction suggests that carboplatin may control tumor progression by downregulating TGF- β expression and the proliferation of cancer cells. In conclusion, our study demonstrates the effectiveness of carboplatin as a chemotherapy agent in inhibiting the proliferation of lung cancer cells (A549) in non-small cell lung cancer (NSCLC) by reducing TGF-β gene expression levels. These findings underscore the potential of carboplatin to modulate gene expression associated with tumor growth, offering a promising therapeutic strategy for NSCLC management. Future studies should explore the broader implications of TGF-β modulation in cancer treatment and investigate the potential of combining carboplatin with other therapeutic agents to enhance its efficacy.

References:

[1].  Siegel, R. L., Giaquinto, A. N., & Jemal, A., (2024). Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 74(1), 12–49. https://doi.org/10.3322/caac.21820

[2].     World Health Organization., (2023, May). Lung Cancer. Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Lung-Cancer

[3].     Chaitanya Thandra, K., Barsouk, A., Saginala, K., Sukumar Aluru, J., & Barsouk, A., (2021). Epidemiology of lung cancer. Współczesna Onkologia, 25(1), 45–52. https://doi.org/10.5114/wo.2021.103829

[4].     Alexander, M., Kim, S. Y., & Cheng, H., (2020). Update 2020: Management of Non-Small Cell Lung Cancer. Lung, 198(6), 897–907. https://doi.org/10.1007/s00408-020-00407-5

[5].     Couraud, S., Zalcman, G., Milleron, B., Morin, F., & Souquet, P.-J., (2012). Lung cancer in never smokers – A review. European Journal of Cancer, 48(9), 1299–1311. https://doi.org/10.1016/j.ejca.2012.03.007

[6].     Zhang, C., Xu, C., Gao, X., & Yao, Q., (2022). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 12(5), 2115–2132. https://doi.org/10.7150/thno.69424

[7].     Sun, C.-C., Li, S.-J., & Li, D.-J. (2016). Hsa-miR-134 suppresses non-small cell lung cancer (NSCLC) development through down-regulation of CCND1. Oncotarget, 7(24), 35960–35978. https://doi.org/10.18632/oncotarget.8482

[8].     Liu, X., Han, Q., Rong, X., Yang, M., Han, Y., Yu, J., & Lin, X., (2020). ANKHD1 promotes the proliferation and invasion of non-small‑cell lung cancer cells via regulating YAP oncoprotein expression and inactivating the Hippo pathway. International Journal of Oncology. https://doi.org/10.3892/ijo.2020.4994

[9].     Kuppusamy, K. M., Selvaraj, S., Singaravelu, P., John, C. M., Racheal, K., Varghese, K., Kaliyamoorthy, D., Perumal, E., & Gunasekaran, K., (2023). Anti-microbial and anti-cancer efficacy of acetone extract of Rosa chinensis against resistant strain and lung cancer cell line. BMC Complementary Medicine and Therapies, 23(1), 406. https://doi.org/10.1186/s12906-023-04222-2

[10]. Ganesh, A., Ashikha Shirin Usman, P. P., K. P., A., Thomas, P., Ganapathy, D. M., & Sekar, D., (2024). Expression analysis of transforming growth factor beta (TGF-β) in oral squamous cell carcinoma. Oral Oncology Reports, 9, 100195. https://doi.org/10.1016/j.oor.2024.100195

[11]. Villar, V. H., Subotički, T., Đikić, D., Mitrović-Ajtić, O., Simon, F., & Santibanez, J. F. (2023). Transforming Growth Factor-β1 in Cancer Immunology: Opportunities for Immunotherapy (pp. 309–328). https://doi.org/10.1007/978-3-031-26163-3_17

[12]. Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews. Molecular Cell Biology, 15(3), 178–196. https://doi.org/10.1038/nrm3758

[13]. van den Bulk, J., de Miranda, N. F. C. C., & ten Dijke, P., (2021). Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression. Clinical Science, 135(1), 35–52. https://doi.org/10.1042/CS20201236

[14]. Dasari, S., & Tchounwou, P. B., (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology, 740, 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025

[15]. National Cancer Institute., (2007). Carboplatin. National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/drugs/carboplatin

[16]. Stöhr, W., Paulides, M., Bielack, S., Jürgens, H., Koscielniak, E., Rossi, R., Langer, T., & Beck, J. D., (2007). Nephrotoxicity of cisplatin and carboplatin in sarcoma patients: A report from the late effects surveillance system. Pediatric Blood & Cancer, 48(2), 140–147. https://doi.org/10.1002/pbc.20812

[17]. Rajasegaran, T., How, C. W., Saud, A., Ali, A., & Lim, J. C. W., (2023). Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals, 16(3), 451. https://doi.org/10.3390/ph16030451

[18]. Cocetta, V., Ragazzi, E., & Montopoli, M., (2019). Mitochondrial Involvement in Cisplatin Resistance. International Journal of Molecular Sciences, 20(14), 3384. https://doi.org/10.3390/ijms20143384

[19]. Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M., & Kroemer, G., (2012). Molecular mechanisms of cisplatin resistance. Oncogene, 31(15), 1869–1883. https://doi.org/10.1038/onc.2011.384

[20]. Kogure, Y., Iwasawa, S., Saka, H., Hamamoto, Y., Kada, A., Hashimoto, H., Atagi, S., Takiguchi, Y., Ebi, N., Inoue, A., Kurata, T., Okamoto, I., Yamaguchi, M., Harada, T., Seike, M., Ando, M., Saito, A. M., Kubota, K., Takenoyama, M., Gemma, A. (2021). Efficacy and safety of carboplatin with nab-paclitaxel versus docetaxel in older patients with squamous non-small-cell lung cancer (CAPITAL): A randomised, multicentre, open-label, phase 3 trial. The Lancet Healthy Longevity, 2(12), e791–e800. https://doi.org/10.1016/S2666-7568(21)00255-5

[21]. Shreya Reddy, C. S., Usman P. P, A. S., Ganapathy, D. M., K. P., A., & Sekar, D., (2024). MicroRNA-21 as a biomarker in terminal stage oral squamous cell carcinoma (OSCC) in the South Indian population. Oral Oncology Reports, 9, 100139. https://doi.org/10.1016/j.oor.2023.100139

[22]. Preca, B.-T., Bajdak, K., Mock, K., Lehmann, W., Sundararajan, V., Bronsert, P., Matzge-Ogi, A., Orian-Rousseau, V., Brabletz, S., Brabletz, T., Maurer, J., & Stemmler, M. P. (2017). A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget, 8(7), 11530–11543. https://doi.org/10.18632/oncotarget.14563

[23]. Deng, R., Wang, S.-M., Yin, T., Ye, T.-H., Shen, G.-B., Li, L., Zhao, J.-Y., Sang, Y.-X., Duan, X.-G., & Wei, Y.-Q., (2012). Inhibition of Tumor Growth and Alteration of Associated Macrophage Cell Type by an HO-1 Inhibitor in Breast Carcinoma-Bearing Mice. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 20(10), 473–482. https://doi.org/10.3727/096504013X13715991125684