Application of Artificial Intelligence (AI) as the Assisting Strategy in the Cardiology Department

Download Article

DOI: 10.21522/TIJPH.2013.12.04.Art092

Authors : Manju Baby, Sam Emmanuel Sabu, Sanjob Sabu

Abstract:

This manuscript explores the application of artificial intelligence (AI) in the cardiology department, highlighting its transformative impact on diagnostics, treatment, and patient management. AI encompasses various methods, including machine learning and deep learning, which enable the analysis of extensive data sets for improved decision-making in clinical practice. The paper discusses how the development of AI technologies that enhance the identification and prediction of cardiovascular diseases, through innovative analytical solutions that offer superior accuracy and speed compared to traditional methods. A significant focus is placed on AI’s capability to swiftly interpret complex ECG patterns, facilitating early diagnosis of life-threatening arrhythmias. Furthermore, the manuscript emphasizes the importance of personalized medicine, wherein AI-driven insights contribute to tailored care plans for individual patients. The strategic integration of AI within cardiology not only enhances the quality of care but also streamlines clinical workflows. By addressing ethical considerations and potential biases, this paper aims to provide a comprehensive overview of the current state and future potential of AI in cardiology, ultimately advocating for its wider implementation to advance patient outcomes in cardiovascular health.

References:

[1].   Harmon, D. M., Mangold, K., Baez Suarez, A., Scott, C. G., Murphree, D. H., Malik, A., Attia, Z. I., Lopez-Jimenez, F., Friedman, P. A., Dispenzieri, A., & Grogan, M. 2023, Post development Performance and Validation of the Artificial Intelligence-Enhanced Electrocardiogram for Detection of Cardiac Amyloidosis. JACC: Advances, 2(8), 100612. https://doi.org/10.1016/j.jacadv.2023.100612

[2].   Williams, R., Anderson, S., Cresswell, K., Kannelønning, M. S., Mozaffar, H., & Yang, X. 2024, Domesticating AI in medical diagnosis. Technology in Society, 76, 102469. https://doi.org/10.1016/j.techsoc.2024.102469

[3].   Huang, K.-C., Huang, C.-S., Su, M.-Y., Hung, C.-L., Ethan Tu, Y.-C., Lin, L.-C., & Hwang, J.-J. 2021, Artificial Intelligence Aids Cardiac Image Quality Assessment for Improving Precision in Strain Measurements. JACC: Cardiovascular Imaging, 14(2), 335–345. https://doi.org/10.1016/j.jcmg.2020.08.034

[4].   Adedinsewo, D. A., Pollak, A. W., Phillips, S. D., Smith, T. L., Svatikova, A., Hayes, S. N., Mulvagh, S. L., Norris, C., Roger, V. L., Noseworthy, P. A., Yao, X., & Carter, R. E. 2022, Cardiovascular Disease Screening in Women: Leveraging Artificial Intelligence and Digital Tools. Circulation Research, 130(4), 673–690. https://doi.org/10.1161/CIRCRESAHA.121.319876

[5].   Alharbi, Y. 2024, Artificial intelligence in cardiology: Present state and prospective directions. Journal of Radiation Research and Applied Sciences, 17(3), 101012. https://doi.org/10.1016/j.jrras.2024.101012

[6].   Attia, Z. I., Harmon, D. M., Behr, E. R., & Friedman, P. A. 2021, Application of artificial intelligence to the electrocardiogram. European Heart Journal, 42(46), 4717–4730. https://doi.org/10.1093/eurheartj/ehab649

[7].   Balloch, J., Sridharan, S., Oldham, G., Wray, J., Gough, P., Robinson, R., Sebire, N. J., Khalil, S., Asgari, E., Tan, C., Taylor, A., & Pimenta, D. 2024, Use of an ambient artificial intelligence tool to improve the quality of clinical documentation. Future Healthcare Journal, 11(3), 100157. https://doi.org/10.1016/j.fhj.2024.100157

[8].   Bahado-Singh, R., Friedman, P., Talbot, C., Aydas, B., Southekal, S., Mishra, N. K., Guda, C., Yilmaz, A., Radhakrishna, U., & Vishweswaraiah, S. 2023, Cell-free DNA in maternal blood and artificial intelligence: Accurate prenatal detection of fetal congenital heart defects. American Journal of Obstetrics and Gynecology, 228(1), 76.e1-76.e10. https://doi.org/10.1016/j.ajog.2022.07.062

[9].   Brendel, J. M., Walterspiel, J., Hagen, F., Kübler, J., Paul, J.-F., Nikolaou, K., Gawaz, M., Greulich, S., Krumm, P., & Winkelmann, M. 2024, Coronary artery disease evaluation during transcatheter aortic valve replacement work-up using photon-counting CT and artificial intelligence. Diagnostic and Interventional Imaging, 105(7–8), 273–280. https://doi.org/10.1016/j.diii.2024.01.010

[10].  Chen, E., Jiang, J., Su, R., Gao, M., Zhu, S., Zhou, J., & Huo, Y. 2020, A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation. Heart Rhythm, 17(5), 847–853. https://doi.org/10.1016/j.hrthm.2020.01.034

[11].  De Koning, E., Van der Haas, Y., Saguna, S., Stoop, E., Bosch, J., Beeres, S., Schalij, M., & Boogers, M. 2023, AI Algorithm to Predict Acute Coronary Syndrome in Prehospital Cardiac Care: Retrospective Cohort Study. JMIR Cardio, 7, e51375. https://doi.org/10.2196/51375

[12].  Dey, D., Slomka, P. J., Leeson, P., Comaniciu, D., Shrestha, S., Sengupta, P. P., & Marwick, T. H. 2019, Artificial Intelligence in Cardiovascular Imaging. Journal of the American College of Cardiology, 73(11), 1317–1335. https://doi.org/10.1016/j.jacc.2018.12.054

[13].  Echefu, G., Shah, R., Sanchez, Z., Rickards, J., & Brown, S.-A. 2024, Artificial intelligence: Applications in cardio-oncology and potential impact on racial disparities. American Heart Journal Plus: Cardiology Research and Practice, 48, 100479. https://doi.org/10.1016/j.ahjo.2024.100479

[14].  Firima, E., Gonzalez, L., Manthabiseng, M., Bane, M., Lukau, B., Leigh, B., Kaufmann, B. A., Weisser, M., Amstutz, A., Tromp, J., Labhardt, N. D., & Burkard, T. 2024, Implementing focused echocardiography and AI-supported analysis in a population-based survey in Lesotho: Implications for community-based cardiovascular disease care models. Hypertension Research, 47(3), 708–713. https://doi.org/10.1038/s41440-023-01559-6

[15].  Gearhart, A., Dwork, N., & Jone, P.-N. 2022, Artificial intelligence in echocardiography to diagnose congenital heart disease and fetal echocardiography. Intelligence-Based Medicine, 6, 100082. https://doi.org/10.1016/j.ibmed.2022.100082

[16].  Haleem, A., Javaid, M., Singh, R. P., & Suman, R. 2021, Applications of Artificial Intelligence (AI) for cardiology during the COVID-19 pandemic. Sustainable Operations and Computers, 2, 71–78. https://doi.org/10.1016/j.susoc.2021.04.003

[17].  In Kim, Y., Roh, J.-H., Kweon, J., Kwon, H., Chae, J., Park, K., Lee, J.-H., Jeong, J.-O., Kang, D.-Y., Lee, P. H., Ahn, J.-M., Kang, S.-J., Park, D.-W., Lee, S.-W., Lee, C. W. W., Park, S.-J., & Kim, Y.-H. 2024, Artificial intelligence-based quantitative coronary angiography of major vessels using deep-learning. International Journal of Cardiology, 405, 131945. https://doi.org/10.1016/j.ijcard.2024.131945

[18].  Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. 2018, Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521

[19].  Wang, Y.-R., Yang, K., Wen, Y., Wang, P., Hu, Y., Lai, Y., Wang, Y., Zhao, K., Tang, S., Zhang, A., Zhan, H., Lu, M., Chen, X., Yang, S., Dong, Z., Wang, Y., Liu, H., Zhao, L., Huang, L., … Zhao, S. 2024, Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nature Medicine, 30(5), 1471–1480. https://doi.org/10.1038/s41591-024-02971-2

[20].  Jones, L. K., Gidding, S. S., Santos, R. D., Libby, P., Watts, G. F., & Sarkies, M. N. 2024, Application of implementation science for improving the utilization of an international clinical practice guidance on familial hypercholesterolemia. Journal of Clinical Lipidology, 18(4), e525–e536. https://doi.org/10.1016/j.jacl.2024.03.010

[21].  Kassem, K., Sperti, M., Cavallo, A., Vergani, A. M., Fassino, D., Moz, M., Liscio, A., Banali, R., Dahlweid, M., Benetti, L., Bruno, F., Gallone, G., De Filippo, O., Iannaccone, M., D’Ascenzo, F., De Ferrari, G. M., Morbiducci, U., Della Valle, E., & Deriu, M. A. 2024, An innovative artificial intelligence-based method to compress complex models into explainable, model-agnostic and reduced decision support systems with application to healthcare (NEAR). Artificial Intelligence in Medicine, 151, 102841. https://doi.org/10.1016/j.artmed.2024.102841

[22].  Liu, C.-M., Shih, E. S. C., Chen, J.-Y., Huang, C.-H., Wu, I.-C., Chen, P.-F., Higa, S., Yagi, N., Hu, Y.-F., Hwang, M.-J., & Chen, S.-A. 2022, Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension. JACC: Asia, 2(3), 258–270. https://doi.org/10.1016/j.jacasi.2022.02.008

[23].  Lin, F., Zhang, P., Chen, Y., Liu, Y., Li, D., Tan, L., Wang, Y., Wang, D. W., Yang, X., Ma, F., & Li, Q. 2024, Artificial-intelligence-based risk prediction and mechanism discovery for atrial fibrillation using heartbeat-to-beat intervals. Med, 5(5), 414-431.e5. https://doi.org/10.1016/j.medj.2024.02.006

[24].  Kirchner, J., Gerçek, M., Gesch, J., Omran, H., Friedrichs, K., Rudolph, F., Ivannikova, M., Rossnagel, T., Piran, M., Pfister, R., Blanke, P., Rudolph, V., & Rudolph, T. K. 2024, Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair. International Journal of Cardiology, 411, 132233. https://doi.org/10.1016/j.ijcard.2024.132233

[25].  Krishna, H., Desai, K., Slostad, B., Bhayani, S., Arnold, J. H., Ouwerkerk, W., Hummel, Y., Lam, C. S. P., Ezekowitz, J., Frost, M., Jiang, Z., Equilbec, C., Twing, A., Pellikka, P. A., Frazin, L., & Kansal, M. 2023, Fully Automated Artificial Intelligence Assessment of Aortic Stenosis by Echocardiography. Journal of the American Society of Echocardiography, 36(7), 769–777. https://doi.org/10.1016/j.echo.2023.03.008

[26].  Krittanawong, C., Johnson, K. W., Choi, E., Kaplin, S., Venner, E., Murugan, M., Wang, Z., Glicksberg, B. S., Amos, C. I., Schatz, M. C., & Tang, W. H. W. 2022, Artificial Intelligence and Cardiovascular Genetics. Life, 12(2), 279. https://doi.org/10.3390/life12020279

[27].  Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. 2017, Artificial Intelligence in Precision Cardiovascular Medicine. Journal of the American College of Cardiology, 69(21), 2657–2664. https://doi.org/10.1016/j.jacc.2017.03.571

[28].  Ledziński, Ł., & Grześk, G. 2023, Artificial Intelligence Technologies in Cardiology. Journal of Cardiovascular Development and Disease, 10(5), 202. https://doi.org/10.3390/jcdd10050202

[29].  Vrudhula, A., Stern, L., Cheng, P. C., Ricchiuto, P., Daluwatte, C., Witteles, R., Patel, J., & Ouyang, D. 2024, Impact of Case and Control Selection on Training Artificial Intelligence Screening of Cardiac Amyloidosis. JACC: Advances, 3(9), 100998. https://doi.org/10.1016/j.jacadv.2024.100998

[30].  Wang, H., Zu, Q., Lu, M., Chen, R., Yang, Z., Gao, Y., & Ding, J. 2022, Application of Medical Knowledge Graphs in Cardiology and Cardiovascular Medicine: A Brief Literature Review. Advances in Therapy, 39(9), 4052–4060. https://doi.org/10.1007/s12325-022-02254-7

[31].  Li, F., Bi, Z., Xu, H., Shi, Y., Duan, N., & Li, Z. 2023, Design and implementation of a smart Internet of Things chest pain center based on deep learning. Mathematical Biosciences and Engineering, 20(10), 18987–19011. https://doi.org/10.3934/mbe.2023840

[32].  Matthiesen, S., Diederichsen, S. Z., Hansen, M. K. H., Villumsen, C., Lassen, M. C. H., Jacobsen, P. K., Risum, N., Winkel, B. G., Philbert, B. T., Svendsen, J. H., & Andersen, T. O. 2021, Clinician Reimplementation Perspectives of a Decision-Support Tool for the Prediction of Cardiac Arrhythmia Based on Machine Learning: Near-Live Feasibility and Qualitative Study. JMIR Human Factors, 8(4), e26964. https://doi.org/10.2196/26964

[33].  Lin, C., Chen, C.-C., Chau, T., Lin, C.-S., Tsai, S.-H., Lee, D.-J., Lee, C.-C., Shang, H.-S., & Lin, S.-H. 2022, Artificial intelligence-enabled electrocardiography identifies severe dyscalcemias and has prognostic value. Clinica Chimica Acta, 536, 126–134. https://doi.org/10.1016/j.cca.2022.09.021

[34].  Moualla, S. K., McCarthy, P. M., Thomas, J. D., Dobbles, M., Petrescu, O. M., Loper, T., Barnhart, G. R., & Brennan, J. M. 2022, The artificial intelligence-enabled predictive model of progression from moderate to severe aortic stenosis. Intelligence-Based Medicine, 6, 100062. https://doi.org/10.1016/j.ibmed.2022.100062

[35].  Van Tongeren, O. L. R. M., Vanmaele, A., Rastogi, V., Hoeks, S. E., Verhagen, H. J. M., & De Bruin, J. L. 2024, Volume Measurements for Surveillance after Endovascular Aneurysm Repair using Artificial Intelligence. European Journal of Vascular and Endovascular Surgery, S1078588424007883. https://doi.org/10.1016/j.ejvs.2024.08.045

[36].  Vandenberk, B., Chew, D. S., Prasana, D., Gupta, S., & Exner, D. V. 2023, Successes and challenges of artificial intelligence in cardiology. Frontiers in Digital Health, 5, 1201392. https://doi.org/10.3389/fdgth.2023.1201392

[37].  Oikonomou, E. K., & Khera, R. 2024, Designing medical artificial intelligence systems for global use: Focus on interoperability, scalability, and accessibility. Hellenic Journal of Cardiology, S1109966624001581. https://doi.org/10.1016/j.hjc.2024.07.003

[38].  Samant, S., Bakhos, J. J., Wu, W., Zhao, S., Kassab, G. S., Khan, B., Panagopoulos, A., Makadia, J., Oguz, U. M., Banga, A., Fayaz, M., Glass, W., Chiastra, C., Burzotta, F., LaDisa, J. F., Iaizzo, P., Murasato, Y., Dubini, G., Migliavacca, F., … Chatzizisis, Y. S. 2023, Artificial Intelligence, Computational Simulations, and Extended Reality in Cardiovascular Interventions. JACC: Cardiovascular Interventions, 16(20), 2479–2497 https://doi.org/10.1016/j.jcin.2023.07.022

[39].  Schepart, A., Burton, A., Durkin, L., Fuller, A., Charap, E., Bhambri, R., & Ahmad, F. S. 2023, Artificial intelligence-enabled tools in cardiovascular medicine: A survey of current use, perceptions, and challenges. Cardiovascular Digital Health Journal, 4(3), 101–110. https://doi.org/10.1016/j.cvdhj.2023.04.003

[40].  Toprak, B., Solleder, H., Di Carluccio, E., Greenslade, J. H., Parsonage, W. A., Schulz, K., Cullen, L., Apple, F. S., Ziegler, A., Blankenberg, S., Stephensen, L., Brownlee, E., McCormick, E., Fincher, G., Hall, E. J., Hancock, R., Gaikwad, N., Gangathimmaiah, V., Hamilton-Craig, C., … Then, M. 2024, Diagnostic accuracy of a machine learning algorithm using point-of-care high-sensitivity cardiac troponin I for rapid rule-out of myocardial infarction: A retrospective study. The Lancet Digital Health, 6(10), e729–e738. https://doi.org/10.1016/S2589-7500(24)00191-2

[41].  Otaki, Y., Singh, A., Kavanagh, P., Miller, R. J. H., Parekh, T., Tamarappoo, B. K., Sharir, T., Einstein, A. J., Fish, M. B., Ruddy, T. D., Kaufmann, P. A., Sinusas, A. J., Miller, E. J., Bateman, T. M., Dorbala, S., Di Carli, M., Cadet, S., Liang, J. X., Dey, D., … Slomka, P. J. 2022, Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC: Cardiovascular Imaging, 15(6), 1091–1102. https://doi.org/10.1016/j.jcmg.2021.04.030

[42].  Soh, C. H., Wright, L., Baumann, A., Seidel, B., Yu, C., Nolan, M., Mylius, T., & Marwick, T. H. 2024, Use of artificial intelligence‐guided echocardiography to detect cardiac dysfunction and heart valve disease in rural and remote areas: Rationale and design of the AGILE‐echo trial. American Heart Journal, 277, 11–19. https://doi.org/10.1016/j.ahj.2024.08.004

[43].  Spielvogel, C. P., Haberl, D., Mascherbauer, K., Ning, J., Kluge, K., Traub-Weidinger, T., Davies, R. H., Pierce, I., Patel, K., Nakuz, T., Göllner, A., Amereller, D., Starace, M., Monaci, A., Weber, M., Li, X., Haug, A. R., Calabretta, R., Ma, X., … Nitsche, C. 2024, Diagnosis and prognosis of abnormal cardiac scintigraphy uptake suggestive of cardiac amyloidosis using artificial intelligence: A retrospective, international, multicentre, cross-tracer development and validation study. The Lancet Digital Health, 6(4), e251–e260. https://doi.org/10.1016/S2589-7500(23)00265-0

[44].  Strom, J. B., Playford, D., Stewart, S., & Strange, G. 2024, An Artificial Intelligence Algorithm for Detection of Severe Aortic Stenosis. JACC: Advances, 3(9), 101176. https://doi.org/10.1016/j.jacadv.2024.101176

[45].  Palmieri, V., Montisci, A., Vietri, M. T., Colombo, P. C., Sala, S., Maiello, C., Coscioni, E., Donatelli, F., & Napoli, C. 2023, Artificial intelligence, big data, and heart transplantation: Actualities. International Journal of Medical Informatics, 176, 105110. https://doi.org/10.1016/j.ijmedinf.2023.105110

[46].  Schuuring, M. J., Išgum, I., Cosyns, B., Chamuleau, S. A. J., & Bouma, B. J. 2021, Routine Echocardiography and Artificial Intelligence Solutions. Frontiers in Cardiovascular Medicine, 8, 648877. https://doi.org/10.3389/fcvm.2021.648877

[47].  Shaffer, B. C., Brown, S., Chinapen, S., Mangold, K. E., Lahoud, O., Lopez-Jimenez, F., Schaffer, W., Liu, J., Giralt, S., Devlin, S., Shah, G., Scordo, M., Papadopoulos, E., Landau, H., Usmani, S., Perales, M.-A., Friedman, P. A., Gersh, B. J., Attia, I. Z., … Kosmidou, I. 2024, Artificial intelligence-enabled interpretation of ECG images to predict hematopoietic cell transplantation toxicity. Blood Advances, 8(21), 5603–5611. https://doi.org/10.1182/bloodadvances.2024013636

[48].  Rushlow, D. R., Croghan, I. T., Inselman, J. W., Thacher, T. D., Friedman, P. A., Yao, X., Pellikka, P. A., Lopez-Jimenez, F., Bernard, M. E., Barry, B. A., Attia, I. Z., Misra, A., Foss, R. M., Molling, P. E., Rosas, S. L., & Noseworthy, P. A. 2022, Clinician Adoption of an Artificial Intelligence Algorithm to Detect Left Ventricular Systolic Dysfunction in Primary Care. Mayo Clinic Proceedings, 97(11), 2076–2085. https://doi.org/10.1016/j.mayocp.2022.04.008

[49].  Salem, M., Gada, H., Ramlawi, B., Sotelo, M., Nona, P., Wagner, L., Rogers, C., Brigman, L., & Vora, A. N. 2024, Predictors of Disease Progression and Adverse Clinical Outcomes in Patients with Moderate Aortic Stenosis Using an Artificial Intelligence-Based Software Platform. The American Journal of Cardiology, 223, 92–99. https://doi.org/10.1016/j.amjcard.2024.04.051

[50].  Sveric, K. M., Ulbrich, S., Dindane, Z., Winkler, A., Botan, R., Mierke, J., Trausch, A., Heidrich, F., & Linke, A. 2024, Improved assessment of left ventricular ejection fraction using artificial intelligence in echocardiography: A comparative analysis with cardiac magnetic resonance imaging. International Journal of Cardiology, 394, 131383. https://doi.org/10.1016/j.ijcard.2023.131383

[51].  Brown, S.-A. 2022, Introduction to “Artificial intelligence and health informatics in learning health systems in cardio-oncology.” American Heart Journal Plus: Cardiology Research and Practice, 18, 100156. https://doi.org/10.1016/j.ahjo.2022.100156

[52].  Jasani, M. 2024, AI in Healthcare: A Complete List of the Latest Statistics. Retrieved from: https://www.excellentwebworld.com/ai-in-healthcare-statistics/

[53].  Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372: n71. doi: 10.1136/bmj. n71.