A Blockchain-Based, Efficient, and Privacy-Preserving Data Exchange System for mHealthcare that Includes Trust Authentication

Download Article

DOI: 10.21522/TIJPH.2013.12.04.Art069

Authors : Krishnamoorthy, R., Kaliyamurthie K. P.

Abstract:

The mobile healthcare (mHealthcare) paradigm provides promise to enhance the delivery of healthcare services through remote diagnostics and medical data interchange. But problems like unapproved access and data leaks continue. Although there are still problems, attribute-based encryption (ABE) is a useful cryptographic method for protecting data exchange in mHealthcare. To address these problems, this study provides an effective data sharing strategy that also protects privacy. The mHealthcare service users activity has been monitored for malicious analysis in which the authentication of the users is analysed using convolutional reinforcement fuzzy neural network. the trained and classified output gives security analysis based on healthcare data modelling then the network privacy is enhanced. In order to protect user privacy, it hides a portion of the access policy, adds an offline method for generating keys and encrypting data in mHealthcare, and uses blockchain technology to provide decentralized, reliable verification of data access rights. The enhanced security and efficiency of the method are confirmed by security proofs and experimental outcomes. Proposed technique attained detection accuracy 96%, data privacy analysis of 94%, recall of 90%, RMSE of 60% based on mHealthcare dataset analysis.

References:

[1].   Xu, X., Peng, H., Bhuiyan, M. Z. A., Hao, Z., Liu, L., Sun, L., & He, L. 2021. Privacy-preserving federated depression detection from multisource mobile health data. IEEE transactions on industrial informatics18(7), 4788-4797. DOI: 10.1109/TII.2021.3113708

[2].   Altameem, A., Kovtun, V., Al-Ma'aitah, M., Altameem, T., Fouad, H., & Youssef, A. E. 2022. Patient's data privacy protection in medical healthcare transmission services using back propagation learning. Computers and Electrical Engineering102, 108087. https://doi.org/10.1016/j.compeleceng.2022.108087

[3].   Hennebelle, A., Ismail, L., Materwala, H., Al Kaabi, J., Ranjan, P., & Janardhanan, R. 2024. Secure and privacy-preserving automated machine learning operations into end-to-end integrated IoT-edge-artificial intelligence-blockchain monitoring system for diabetes mellitus prediction. Computational and Structural Biotechnology Journal23, 212-233. DOI: 10.1016/j.csbj.2023.11.038

[4].   Wang, W., Li, X., Qiu, X., Zhang, X., Brusic, V., & Zhao, J. 2023. A privacy in smart healthcare systems. Information Processing & Management60(1), 103167. https://doi.org/10.1016/j.ipm.2022.103167

[5].   Motahari, D., Arif, S., Mohboubi, A., & ur Rehman, S. 2020, November. Investigation of Mobile Machine Learning Models to Preserve the Effectiveness of User Privacy. In 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA) pp. 1-7. IEEE. DOI:10.1109/CITISIA50690.2020.9397489

[6].   Sahinbas, K., & Catak, F. O. 2023. Secure multi-party computation-based privacy-preserving data analysis in healthcare IoT systems. In Interpretable Cognitive Internet of Things for Healthcare pp. 57-72. Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-08637-3_3

[7].   Sinaci, A. A., Gencturk, M., Alvarez-Romero, C., Erturkmen, G. B. L., Martinez-Garcia, A., Escalona-Cuaresma, M. J., & Parra-Calderon, C. L. 2024. Privacy-preserving federated machine learning on FAIR health data: A real-world application. Computational and Structural Biotechnology Journal. https://doi.org/10.1016/j.csbj.2024.02.014

[8].   Boulemtafes, A., Derhab, A., & Challal, Y. 2022. Privacy-preserving deep learning for pervasive health monitoring: a study of environment requirements and existing solutions adequacy. Health and Technology12(2), 285-304. https://link.springer.com/article/10.1007/s12553-022-00640-3

[9].   Kang, J. J., Dibaei, M., Luo, G., Yang, W., & Zheng, X. 2020, December. A privacy-preserving data inference framework for internet of health things networks. In 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) pp. 1209-1214. IEEE. DOI: 10.1109/TrustCom50675.2020.00162

[10].  Deng, H., Qin, Z., Sha, L., & Yin, H. 2020. A flexible privacy-preserving data sharing scheme in cloud-assisted IoT. IEEE Internet of Things Journal7(12), 11601-11611. https://ieeexplore.ieee.org/document/9105096

[11].  Jayaram, R., & Prabakaran, S. 2021. Onboard disease prediction and rehabilitation monitoring on secure edge-cloud integrated privacy preserving healthcare system. Egyptian Informatics Journal22(4), 401-410. https://doi.org/10.1016/j.eij.2020.12.003

[12].  Abdo, M. A., Abdel-Hamid, A. A., & Elzouka, H. A. 2020, December. A cloud-based mobile healthcare monitoring framework with location privacy preservation. In 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT) (pp. 1-8). IEEE. https://ieeexplore.ieee.org/document/9311999

[13].  Liang, J., Qin, Z., Xue, L., Lin, X., & Shen, X. 2021. Efficient and privacy-preserving decision tree classification for health monitoring systems. IEEE Internet of Things Journal8(16), 12528-12539. DOI: 10.1109/JIOT.2021.3066307

[14].  Zhu, D., Zhu, H., Huang, C., Lu, R., Feng, D., & Shen, X. 2023. Efficient and Accurate Cloud-Assisted Medical Pre-Diagnosis With Privacy Preservation. IEEE Transactions on Dependable and Secure Computing. DOI: 10.1109/TDSC.2023.3263974

[15].  Othman, S. B., Almalki, F. A., Chakraborty, C., & Sakli, H. 2022. Privacy-preserving aware data aggregation for IoT-based healthcare with green computing technologies. Computers and Electrical Engineering101, 108025. https://doi.org/10.1016/j.compeleceng.2022.108025

[16].  Aminifar, A., Rabbi, F., Pun, V. K. I., & Lamo, Y. 2021, November. Monitoring motor activity data for detecting patients’ depression using data augmentation and privacy-preserving distributed learning. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) pp. 2163-2169. IEEE. DOI: 10.1109/EMBC46164.2021.9630592

[17].  Guduri, M., Chakraborty, C., & Margala, M. 2023. Blockchain-based federated learning technique for privacy preservation and security of smart electronic health records. IEEE Transactions on Consumer Electronics. DOI: 10.1109/TCE.2023.3315415

[18].  Li, C., Dong, M., Xin, X., Li, J., Chen, X. B., & Ota, K. 2023. Efficient privacy-preserving in IoMT with blockchain and lightweight secret sharing. IEEE Internet of Things Journal. DOI: 10.1109/JIOT.2023.3296595

[19].  Xu, G., Qi, C., Dong, W., Gong, L., Liu, S., Chen, S., & Zheng, X. 2022. A privacy-preserving medical data sharing scheme based on blockchain. IEEE Journal of Biomedical and Health Informatics27(2), 698-709. DOI: 10.1109/GLOBECOM42002.2020.9348251

[20].  Abdelfattah, S., Badr, M. M., Mahmoud, M., Abualsaud, K., Yaacoub, E., & Guizani, M. 2023. Efficient and privacy-preserving cloud-based medical diagnosis using an ensemble classifier with inherent access control and micro-payment. IEEE Internet of Things Journal. DOI:10.1109/JIOT.2023.3303429

[21].  Patruni, M. R., & Humayun, A. G. 2024. PPAM-mIoMT: a privacy-preserving authentication with device verification for securing healthcare systems in 5G networks. International Journal of Information Security23(1), 679-698. https://doi.org/10.1007/s10207-023-00775-y

[22].  Iwaya, L. H., Ahmad, A., & Babar, M. A. 2020. Security and privacy for mHealthcare and uHealth systems: a systematic mapping study. IEEE Access8, 150081-150112. DOI: 10.1109/ACCESS.2020.3015962

[23].  Long, G., Shen, T., Tan, Y., Gerrard, L., Clarke, A., & Jiang, J. 2021. Federated learning for privacy-preserving open innovation future on digital health. In Humanity Driven AI: Productivity, Well-being, Sustainability and Partnership (pp. 113-133). Cham: Springer International Publishing. https://doi.org/10.48550/arXiv.2108.10761