Predictors of Unsuppressed HIV Viral Load and Low CD4 Count Among ZIMPHIA 2020 Survey Participants
Abstract:
Unsuppressed Viral load
and low CD4 counts pose a significant challenge to HIV/AIDS management.
Understanding the predictors of unsuppressed viral load and CD4 is critical for
developing strategies to mitigate its impact. This study aimed to identify
predictors of unsuppressed HIV viral load and low CD4 counts among Zimbabwe population-based HIV impact assessment survey
(ZIMPHIA 2020) study participants.
We analysed data from the ZIMPHIA 2020 survey. Data collection was done using
structured interviews, home-based HIV testing and laboratory testing. Blood
samples from participants were tested for HIV and those positive were analysed
for CD4 counts and Viral load tests. We then calculated odds ratios for
predictors of unsuppressed viral load (viral load ≥1000 copies/mL) and low CD4
counts (CD4< 350). The prevalence of unsuppressed viral
load and low CD4 count were 20.7% and 34.7%, respectively. Males were more likely
to be virally unsuppressed (25.1%) than females (18.8%) adjusted odds ratio
(aOR) (95% confidence interval) 1.74 (1.43-2.11) p-value < 0.001. The odds
of having a low CD4 count were higher among males (41%) than females (19%) aOR
(95% confidence interval) 3.07 (2.57-3.66). Urban dwellers were more likely to
have a low CD4 count (31.1%0 than rural dwellers (23.8%) aOR (95% confidence
interval) 1.45 (1.21-1.73) p-value <0.001. The
common predictors of both unsuppressed viral load and low CD4 were gender,
never tested for HIV and never had a viral load test.
References:
[1]. UNAIDS, 2021, Global AIDS Strategy 2021–2026 End Inequalities.
End AIDS. https://www.unaids.org/en/resources/documents/2021/2021-2026-global-AIDS-strategy
[2]. WHO, 2023, New WHO guidance on HIV viral suppression and
scientific updates released at IAS 2023, Accessed: May 29, 2024. https://www.who.int/news/item/23-07-2023-new-who-guidance-on-hiv-viral-suppression-and-scientific-updates-released-at-ias-2023
[3]. ICAP, 2021, Zimbabwe Population-based HIV Impact Assessment 2020,
Accessed: May 23, 2024. [Online]. Available: http://phia.icap.columbia.edu
[4]. PEPFAR, 2022, Zimbabwe Country Operational Plan (COP) 2022
Strategic Direction Summary (SDS), Accessed: Aug. 03, 2024. [Online].
Available: https://www.state.gov/wp-content/uploads/2022/09/Zimbabwe-COP22-SDS.pdf
[5]. WHO, 2023, THE Role of HIV Viral Suppression in Improving
Individual Health and Reducing Transmission Policy Brief., Accessed: Aug. 29,
2024. [Online]. Available: https://iris.who.int/bitstream/handle/10665/360860/9789240055179-eng.pdf?sequence=1
[6]. WHO, 2020, HIV Treatment and Care Team, Accessed: Apr. 23,
2024. [Online]. Available: https://www.who.int/ publications
/I/item/point-of-care-test-for-identifying-people-living-with-advanced-HIV-disease
[7]. Ekong, E., Ndembi, N., Okonkwo, P., Dakum, P., Idoko, J.,
Banigbe, B., Okuma, J., Agaba, P., Blattner, W., Adebamowo, C., & Charurat,
M., 2020, Epidemiologic and viral predictors of antiretroviral drug resistance
among persons living with HIV in a large treatment program in Nigeria. AIDS
Research and Therapy, 17(1), 1–8. https://doi.org/10.1186/S12981-020-0261-Z/TABLES/2
[8]. WHO, 2016, Global Health Sector Strategy on HIV 2016–2021
Towards ending AIDS. Accessed: Aug. 14, 2024.Online]. Available: https://www.who.int/publications/i/item/WHO-HIV-2016.05
[9]. Calmy, A., Ford, N., & Meintjes, G., 2018, The
Persistent Challenge of Advanced HIV Disease and AIDS in the Era of
Antiretroviral Therapy. Clinical Infectious Diseases, 66(suppl_2),
S103-SS105. https://doi.org/10.1093/CID/CIX1138
[10]. Ford, N., Meintjes, G., Vitoria, M., Greene, G., &
Chiller, T., 2017, The evolving role of CD4 cell counts in HIV care. Current
Opinion in HIV and AIDS, 12(2), 123–128. https://doi.org/10.1097/COH.0000000000000348
[11]. Rice, B., Boulle, A., Schwarcz, S., Shroufi, A., Rutherford,
G., & Hargreaves, J., 2019, The Continuing Value of CD4 Cell Count
Monitoring for Differential HIV Care and Surveillance. JMIR Public Health
and Surveillance, 5(1), e11136. https://doi.org/10.2196/11136
[12]. Andarge, D. E., Hailu, H. E., & Menna, T., 2022,
Incidence, survival time and associated factors of virological failure among
adult HIV/AIDS patients on first line antiretroviral therapy in St. Paul’s
Hospital Millennium Medical College—A retrospective cohort study. PLOS ONE,
17(10), e0275204. https://doi.org/10.1371/JOURNAL.PONE.0275204
[13]. Sithole, Z., Mbizvo, E., Chonzi, P., Mungati, M., Juru, T.
P., Shambira, G., Gombe, N. T., & Tshimanga, M., 2018, Virological failure
among adolescents on ART, Harare City, 2017- a case-control study. BMC
Infectious Diseases, 18(1), 1–8. https://doi.org/10.1186/S12879-018-3372-6/TABLES/5
[14]. Jackson, C., Rehman, A. M., McHugh, G., Gonzalez-Martinez,
C., Ngwira, L. G., Bandason, T., Mujuru, H., Odland, J. O., Corbett, E. L.,
Ferrand, R. A., & Simms, V., 2022, Risk factors for sustained virological
non-suppression among children and adolescents living with HIV in Zimbabwe and
Malawi: a secondary data analysis. BMC Pediatrics, 22(1), 1–9. https://doi.org/10.1186/S12887-022-03400-4/TABLES/5
[15]. Hakizayezu, F., Biracyaza, E., Niyompano, H., &
Umubyeyi, A., 2022, The Frequency and Predictors of Unsuppressed HIV Viral Load
Among People with HIV in Nyaruguru District, Rwanda. HIV/AIDS (Auckland,
N.Z.), 14, 381–395. https://doi.org/10.2147/HIV.S376053
[16]. Melku, M., Gesesew, H. A., & Ward, P. R., 2022,
Magnitude and predictors of HIV-Drug resistance in Africa: A protocol for
systematic review and meta-analysis. PLOS ONE, 17(4), e0267159. https://doi.org/10.1371/JOURNAL.PONE.0267159
[17]. Chikwari, C. D., Kranzer, K., Simms, V., Patel, A., Tembo,
M., Mugurungi, O., Sibanda, E., Mufare, O., Ndlovu, L., Muzangwa, J., Vundla,
R., Chibaya, A., Hayes, R., Mackworth-Young, C., Bernays, S., Mavodza, C.,
Hove, F., Bandason, T., Dauya, E., & Ferrand, R. A., 2024, Differentiated
care for youth in Zimbabwe: Outcomes across the HIV care cascade. PLOS
Global Public Health, 4(2 February). https://doi.org/10.1371/journal.pgph.000255
[18]. Ssemwanga, D., Asio, J., Watera, C., Nannyonjo, M., Nassolo,
F., Lunkuse, S., Salazar-Gonzalez, J. F., Salazar, M. G., Sanyu, G., Lutalo,
T., Kabuga, U., Ssewanyana, I., Namatovu, F., Namayanja, G., Namale, A.,
Raizes, E., Kaggwa, M., Namuwenge, N., Kirungi, W., Kaleebu, P., 2020, Prevalence
of viral load suppression, predictors of virological failure and patterns of
HIV drug resistance after 12 and 48 months on first-line antiretroviral
therapy: a national cross-sectional survey in Uganda. Journal of
Antimicrobial Chemotherapy, 75(5), 1280. https://doi.org/10.1093/JAC/DKZ561
[19]. Waju, B., Dube, L., Ahmed, M., & Assefa, S. S., 2021, Unsuppressed
viral load level in public health facilities: nonvirological predictors among
adult antiretroviral therapy users in southwestern ethiopia. HIV/AIDS
(Auckland, N.Z.), 13, 513. https://doi.org/10.2147/HIV.S304653
[20]. Mhlanga, T. T., Jacobs, B. K. M., Decroo, T., Govere, E.,
Bara, H., Chonzi, P., Sithole, N., Apollo, T., Van Damme, W., Rusakaniko, S.,
Lynen, L., & Makurumidze, R., 2022, Virological outcomes and risk factors
for non-suppression for routine and repeat viral load testing after enhanced
adherence counselling during viral load testing scale-up in Zimbabwe: analytic
cross-sectional study using laboratory data from 2014 to 2018. AIDS Research
and Therapy, 19(1). https://doi.org/10.1186/s12981-022-00458-z
[21]. Soogun, A. O., Kharsany, A. B. M., Zewotir, T., North, D.,
Ogunsakin, E., & Rakgoale, P., 2022, Spatiotemporal variation and
predictors of unsuppressed viral load among hiv-positive men and women in rural
and peri-urban kwazulu-natal, south africa. Tropical Medicine and Infectious
Disease, 7(9), 232. https://doi.org/10.3390/TROPICALMED7090232/S1
[22]. ZimStat, 2022, 2022 Population and housing census-
preliminary report on population figures, Accessed: Aug. 12, 2024.Online].
Available: https://www.zimstat.co.zw/wp-content/uploads/2022/07/Census 2022_
Preliminary_Report.pdf
[23]. Wisaksana, R., Hartantri, Y., & Hutajulu, E., 2024, Risk
Factors Associated with Unsuppressed Viral Load in People Living with HIV
Receiving Antiretroviral Treatment in Jawa Barat, Indonesia. HIV/AIDS -
Research and Palliative Care, 16, 1–7. https://doi.org/10.2147/HIV.S407681
[24]. Nyaradzo, B., Kudya, N., Mbofana, E., Masaka, S., Garone,
D., Chen, C.-Y., Mulingwa, A., Uzande, C., Isaakidis, P., & Ndlovu, Z.,
2019, Scaling up HIV viral load monitoring in Manicaland, Zimbabwe: challenges
and opportunities from the field. Public Health Action, 9(4),
177–181. https://doi.org/10.5588/PHA.19.0024
[25]. Asfaw, A., Ali, D., Eticha, T., Alemayehu, A., Alemayehu,
M., & Kindeya, F., 2015, CD4 Cell Count Trends after Commencement of
Antiretroviral Therapy among HIV-Infected Patients in Tigray, Northern
Ethiopia: A Retrospective Cross-Sectional Study. PLOS ONE, 10(3),
e0122583. https://doi.org/10.1371/JOURNAL.PONE.0122583 doi:10.1371/JOURNAL.
PONE.0122583
[26]. Mapiye, M., Ravhuhali, K., de Voux, A., & Kufa, T.,
2024, Factors associated with an unsuppressed viral load among HIV-positive
individuals attending STI services in South Africa, 2019. BMC Infectious
Diseases, 24(1), 1–8. https://doi.org/10.1186/S12879-023-08756-1/TABLES/2
[27]. Gezie, L. D., 2016, Predictors of CD4 count over time among
HIV patients-initiated ART in felege hiwot referral hospital, northwest
Ethiopia: Multilevel analysis. BMC Research Notes, 9(1), 1–9. https://doi.org/10.1186/S13104-016-2182-4/TABLES/6
[28]. Montarroyos, U. R., Miranda-Filho, D. B., César, C. C.,
Souza, W. V., Lacerda, H. R., Albuquerque, M. D. F. P. M., Aguiar, M. F., &
Ximenes, R. A. D. A., 2014, Factors related to changes in CD4+ T-cell counts
over time in patients living with HIV/AIDS: a multilevel analysis. PloS One,
9(2). https://doi.org/10.1371/JOURNAL.PONE.0084276
[29]. Bukenya, D., Mayanja, B. N., Nakamanya, S., Muhumuza, R.,
& Seeley, J., 2019, What causes non-adherence among some individuals on
long term antiretroviral therapy? Experiences of individuals with poor viral
suppression in Uganda. AIDS Research and Therapy, 16(1). https://doi.org/10.1186/S12981-018-0214-Y
[30]. Mantell, J. E., Masvawure, T. B., Mapingure, M., Apollo, T.,
Gwanzura, C., Block, L., Bennett, E., Preko, P., Musuka, G., & Rabkin, M.,
2019, Engaging men in HIV programmes: a qualitative study of male engagement in
community-based antiretroviral refill groups in Zimbabwe. Journal of the
International AIDS Society, 22(10). https://doi.org/10.1002/JIA2.25403
[31]. Weissman, S., Duffus, W. A., Iyer, M., Chakraborty, H.,
Samantapudi, A. V., & Albrecht, H., 2015, Rural-urban differences in HIV
viral loads and progression to AIDS among new HIV cases. Southern Medical
Journal, 108(3), 180–188. https://doi.org/10.14423/SMJ.0000000000000255
[32]. Malaza, A., Mossong, J., Bärnighausen, T., Viljoen, J.,
& Newell, M. L., 2013, Population-based CD4 counts in a rural area in South
Africa with high HIV prevalence and high antiretroviral treatment coverage. Plos
One, 8(7), e70126–e70126. https://doi.org/10.1371/JOURNAL.PONE.0070126
[33]. Adoga, M. P., Pennap, G. R., John, P. A., Shawulu, P. T.,
Kaba, S. V., Forbi, J. C., & Agwale, S. M., 2012, CD4- and CD3-T lymphocyte
reference values of immunocompetent urban and rural subjects in an African
nation. Scandinavian Journal of Immunology, 76(1), 33–38. https://doi.org/10.1111/J.1365-3083.2012.02700.X
[34]. Ministry of Health and Child Care, Zimbabwe, AIDS & TB
Programme for the Prevention, Care and Treatment of HIV in Zimbabwe, 2022,
Operational and Service Delivery Manual 2022 Edition. operational and service
delivery manual for the prevention, care and treatment of hiv in zimbabwe
operational and service delivery manual 1 content abbreviations 2 background
and rationale for the manual 3.
[35]. Owusu, L. B., Ababio, C., Boahene, S., Zakaria, A. F. S., Emikpe,
A. O., Dwumfour, C. K., Appiagyei, K. A., & Apiribu, F., 2023, The
predictors of unsuppressed viremia among PLHIV: a cross-sectional study in
Ghana. BMC Public Health, 23(1). https://doi.org/10.1186/S12889-023-16032-9
[36]. Atuhaire, P., Hanley, S., Yende-Zuma, N., Aizire, J.,
Stranix-Chibanda, L., Makanani, B., Milala, B., Cassim, H., Taha, T., &
Fowler, M. G., 2019, Factors associated with unsuppressed viremia in women
living with HIV on lifelong ART in the multi-country US-PEPFAR PROMOTE study: A
cross-sectional analysis. PLoS ONE, 14(10). https://doi.org/10.1371/JOURNAL.PONE.0219415
[37]. Tomita, A., Vandormael, A., Bärnighausen, T., Phillips, A.,
Pillay, D., De Oliveira, T., Tanser, F., & South, A., 2019, Sociobehavioral
and community predictors of unsuppressed HIV viral load: multilevel results
from a hyperendemic rural South African population HHS Public Access. AIDS,
33(3), 559–569. https://doi.org/10.1097/QAD. 00000 000 000 02100
[38]. Hicham, T., Ilyas, E., Tarik, H., Noureddine, B., Omar, B.,
Rachid, F., Naoufal, H., & Mohammed, B., 2019, Risk factors associated with
unsuppressed viral load in HIV-1 infected patients at the first antiretroviral
therapy in Morocco. International Journal of Mycobacteriology, 8(2),
113–117. https://doi.org/10.4103/IJMY.IJMY_41_19
[39]. Myers, B., Lombard, C., Joska, J. A., Abdullah, F., Naledi,
T., Lund, C., Petersen Williams, P., Stein, D. J., & Sorsdahl, K. R., 2021,
Associations Between Patterns of Alcohol Use and Viral Load Suppression Amongst
Women Living with HIV in South Africa. AIDS and Behavior, 25(11),
3758–3769. https://doi.org/10.1007/S10461-021-03263-3
[40]. Malbergier, A., Do Amaral, R. A., & Cardoso, L. D., 2015,
Alcohol dependence and CD4 cell count: is there a relationship? AIDS Care,
27(1), 54–58. https://doi.org/10.1080/09540 121.2014.947235
[41].
Lesko, C. R., Nance, R. M., Lau, B.,
Fojo, A. T., Hutton, H. E., Delaney, J. A. C., Crane, H. M., Cropsey, K. L.,
Mayer, K. H., Napravnik, S., Geng, E., Mathews, W. C., McCaul, M. E., &
Chander, G., 2021, Changing Patterns of Alcohol Use and Probability of
Unsuppressed Viral Load Among Treated Patients with HIV Engaged in Routine Care
in the United States. AIDS and Behaviour.