A Review of Biomedical Applications of Ormocarpum cochinchinense
Abstract:
Traditional
bone-setting (TBS) techniques were widely used in India before the advent of
modern orthopaedics. Among the plants used in these practices, Ormocarpum cochinchinense, a
medicinal plant native to Southeast Asia, has shown promising therapeutic
properties in treating bone-related ailments. This review explores the
biomedical applications of Ormocarpum
cochinchinense, particularly focusing on its role in orthopaedics and
dentistry. Phytochemical studies have revealed that this plant is rich in
bioactive compounds such as flavonoids, tannins, and alkaloids, which
contribute to its antioxidant, anti-inflammatory, and antimicrobial properties.
In orthopaedics, Ormocarpum
cochinchinense has
demonstrated significant potential in enhancing bone fracture healing,
facilitating bone regeneration, and promoting osseous repair in preclinical
studies. The plant has been shown to enhance calcium, phosphorus, and alkaline
phosphatase levels, which are critical for bone repair. These properties
position Ormocarpum
cochinchinense as a
promising candidate for developing novel treatments for bone fractures and
other orthopaedic conditions. In the field of dentistry, Ormocarpum cochinchinense exhibits anti-inflammatory effects
that may be beneficial in treating periodontal diseases such as periodontitis.
Its antioxidant properties help reduce oxidative stress, a key factor in
chronic inflammation and tissue degradation in periodontal conditions.
Additionally, the plant shows potential as a bioscaffold for dental implants,
promoting osseous regeneration and improving the healing process after dental
surgeries. This review aims to provide a comprehensive analysis of the
phytochemical profile of Ormocarpum
cochinchinense and its
potential applications in both orthopaedic and dental fields, offering insights
into future therapeutic uses.
References:
[1]. Karunakaran, N., Maiti, S., Jayaraman, S., & Paulraj,
J., 2023. Assessment of bone turnover markers prior to dental
implant placement for osteoporosis patients: A case-control study, Annals of Dental Specialty, 11(2),
57–61.
[2]. Gillett,
J. B., 1966, The Species of Ormocarpum Beauv. and Arthrocarpum
Balf.f. (Leguminosae) in South-Western Asia and Africa (Excluding
Madagascar), Kew Bulletin, 20(2),
323–55.
[3]. Hepsibah,
A. H., & Jothi, G. J., 2016, A comparative study on the effect of solvents
on the phytochemical profile and biological potential of Ormocarpum cochinchinense auct. Non (lour.) Merrill, International Journal of Pharmacy &
Pharmaceutical Sciences, 9(1), 67.
[4]. Wang, H., Shan, K., Li, Y., Wu, S., Zhou, C., Tao, S., Wang,
M, Kang, X., Zhou, L., Lyu, Z., L, i N., 2024, Therapeutic potential of Chinese
medicinal herbs stimulating osteogenic differentiation of bone marrow-derived
mesenchymal stem cells in osteoporosis. Frontiers in Pharmacology.31;15:1423555.
[5]. Silambarasan,
R., & Ayyanar, M., 2015, An ethnobotanical study of medicinal plants in
Palamalai region of Eastern Ghats, India, Journal
of Ethnopharmacology, 172, 162–78.
[6]. Nyamboki,
D. K., & Wanga, L. A., 2022, Review of the phytochemical and
pharmacological studies of the genus Ormocarpum, Pharmacognosy Reviews, 16(32), 95–9.
[7]. Abe,
R., & Ohtani, K., 2013, An ethnobotanical study of medicinal plants and
traditional therapies on Batan Island, the Philippines, Journal of Ethnopharmacology, 145(2), 554–65.
[8]. Narayanan, A., Marimuthu, M., Mani, A., Vasu, G., Subhadra
R., 2023, Studies on the Antimicrobial Activity of Ormocarpum cochinchinense Leaf Extract/PVA‐PVP Blended Polymer, Chemistry
Select, 13;8(10):e202203512.
[9]. Bokhad, M. N., Rothe, S. P., 2012, Preliminary phytochemical
investigation of Combretum albidum G. Don; An ignored medicinally important
liana, Journal of Experimental Sciences, 6;3(3).
[10]. Saravanan, J. R., & Jayakumar, N. D., 2021, Green
synthesis of copper oxide nanoparticles using aqueous extract of Ocimum sanctum and analysis of
antimicrobial, anti-inflammatory, and cytotoxic activity of Ocimum sanctum copper oxide
nanoparticles: An in vitro study, International
Journal of Dentistry and Oral Science, 8(6), 2848–2852.
[11]. Lakshme, P. S., Roy, A., Sivaperumal, P., & Lakshmi,
T., 2021, Exploration of antioxidant effects of crude extract of mangrove plant
Avicennia marina, Journal of Pharmaceutical Research
International, 33(62B), 321–329.
[12]. Gulzar, R. A., Ajitha, H. S., 2021, Comparative
Evaluation on the Cytotoxicity of Moringa Oleifera Leaf Extract and Calcium
Hydroxide on Peri-odontal Ligament Fibroblast Cells, International Journal of Dentistry and Oral Sciences, 30;8(05):2610-4.
[13]. Thirumal, S., Duraikannu, G., 2019, Fourier-transform
Infrared Analysis and In Vitro Antibacterial Activity of Ormocarpum cochinchinense (Elumbotti), International
Journal of Pharmaceutical & Biological Archive, Jun 15. Available from: https://papers.ssrn.com/abstract=3787238
[14]. Prescott,
T. A. K., Kiapranis, R., & Maciver, S. K., 2012, Comparative ethnobotany
and in-the-field antibacterial testing of medicinal plants used by the Bulu and
inland Kaulong of Papua New Guinea, Journal
of Ethnopharmacology, 139(2), 497–503.
[15]. Dilipan, E., Sivaperumal, P., Kamala, K., Ramachandran,
M., & Vivekanandhan, P., 2023, Green synthesis of silver nanoparticles
using seagrass Cymodocea serrulata
(R. Br.) Asch. & Magnus, characterization, and evaluation of anticancer,
antioxidant, and antiglycemic index, Biotechnology
and Applied Biochemistry, 70(3), 1346-1356.
[16]. Darshinidevi, T., Suresh, V., Sivaperumal,
P., & Dilipan, E., 2023, Synthesis of silver nanoparticles from Cymodocea
rotundata leaf extract and their biological activities, Cureus, 15(11).
[17]. Kamto, E. L. D., Leitão,
G. G., da Silva, V. A. D., Ferreira-Pereira, A., Ngo Mbing, J., & Pegnyemb,
D. E., 2020, Bioactive non-polar compounds from Ormocarpum kirkii bark: A
source of fungal multidrug resistance inhibitors, Revista Brasileira de Farmacognosi, 30(2), 177–82.
[18]. Hepsibah, A. H., Mala, M., & Jothi, G.
J., 2017, Antimicrobial activity and TLC profiling of Clerodendrum phlomidis
Linn. F leaf extract against multi-drug resistant clinical pathogens, International Journal of Pharmacy &
Pharmaceutical Sciences, 9(9), 275.
[19]. Wilson, J. J.,
Harimuralikrishnaa, T., Sivakumar, T., Mahendran, S., Ponmanickam, P.,
Thangaraj, R., Sevarkodiyone, S., Alharbi, N. S., Kadaikunnan, S., Venkidasamy,
B., & Thiruvengadam, M., 2023, Biogenic synthesis of silver nanoparticles
using Pantoea stewartii and Priestia aryabhattai and their
antimicrobial, larvicidal, histopathological, and biotoxicity potential, Bioengineering, 10(2), 248.
[20]. Govindarajan, M., & Benelli, G., 2016,
One-pot fabrication of silver nanocrystals using Ormocarpum cochinchinense: Biophysical characterization of a potent
mosquitocidal and toxicity on non-target mosquito predators, Journal of Asia-Pacific Entomology,
19(2), 377–85.
[21]. Sivakumar, T., & Gajalakshm, D., 2013,
In vitro antioxidant and chemical constituents from the leaves of Ormocarpum cochinchinense Elumbotti, American
Journal of Plant Physiology, 8(3), 114–22.
[22]. Arivukkarasu, R., Rajasekaran, A., 2021, Fingerprint Analysis
of Herbal Raw Materials available in Market Belongs to Combretacea and Fabaceae
family by HPTLC technique using antioxidant markers, Asian Journal of
Pharmacy and Technology,11(2):130-4.
[23]. Gnanavel, V., Palanichamy, V., &
Roopan, S. M., 2017. Biosynthesis and characterization of copper oxide
nanoparticles and its anticancer activity on human colon cancer cell lines
(HCT-116), Journal of Photochemistry and
Photobiology B: Biology, 171, 133–38.
[24]. Abbasi, S., 2022, Biomimetic synthesis of
nanoparticles: State-of-the-art, Journal of Nanostructure in Chemistry,
12(2), 593–608.
[25]. Rani, N., & Saini, K., 2022, Biogenic
metal and metal oxides nanoparticles as anticancer agents: A review, IOP
Conference Series: Materials Science
and Engineering, 1225(1), 012043.
[26]. Nagarajan, D., 2019, In vitro antioxidant
potential of endophytic fungi isolated from Enicostemma axillare (Lam.) Raynal
and Ormocarpum cochinchinense (Lour.)
Merr, Journal of Pharmacognosy and
Phytochemistry, 8(1), 1356–63.
[27]. Muhammad, W., Abbasi, B. H., Hashmi, S. S., Haroon, M., Shah,
M., 2018, A review on
photocatalytic, antimicrobial, cytotoxic and other biological activities of
phyto-fabricated copper nanoparticles, International
Journal of Biosciences, 13(01), 320–37.
[28]. Nagarajan, D., & Pandian, R., 2018,
Anti-cancer potentials of endophytic fungi isolated from Enicostemma axillare
and Ormocarpum cochinchinense, Journal of Pharmacognosy and Phytochemistry,
7(3), 3186–91.
[29]. Mondal, A., Paul, P., Banerjee, S., 2022, Applications of
metal oxide nanoparticles in cancer therapy. In Advances in Nanotechnology-Based
Drug Delivery Systems, 1 (pp. 471-516).
[30]. Alizadeh, S. R., &
Ebrahimzadeh, M. A., 2021. Characterization
and anticancer activities of green synthesized CuO nanoparticles: A review, Anticancer Agents in Medicinal Chemistry,
21(12), 1529–43.
[31]. Obaid, M. A., Harbi, K. H., & Abd, A.
N., 2021, Biosynthesis of CuO NPs and its anticancer activity on human colon
cancer cell lines (HT-29), Journal of
Physics: Conference Series,
1963(1), 012151.
[32]. Urasopon, N., Hamada, Y., Asaoka, K., Cherdshewasart, W.,
Malaivijitnond, S., 2007, Pueraria mirifica, a phytoestrogen-rich herb,
prevents bone loss in orchidectomized rats. Maturitas, 20;56(3):322-31.
[33]. Leung, P. C., Siu, W. S., 2013, Herbal treatment for
osteoporosis: a current review, Journal of Traditional and Complementary Medicine,1;3(2):82-7.
[34]. Vohra, K., Dureja, H., Garg, V., &
Dutt, R., 2019, Current trends in phyto-cancer therapy using nanoparticles, Current
Nanomedicine, 9(1), 30–45.
[35]. Selvaraj, B., & Ganapathy, D., 2024,
Exploration of Sargassum wightii: Extraction, phytochemical analysis, and
antioxidant potential of polyphenol, Cureus,
16(7).
[36]. Mathew, A. A., Asirvatham, R., Gowtham, A., & Pa, D.,
2021, Study of in vitro anti-inflammatory and immunomodulatory effect of
Ayurvedic plants–Murva. İstanbul Journal
of Pharmacy, 51(3), 333-340.
[37]. Manokari, M., Priyadharshini, S., &
Shekhawat, M. S., 2021, Influence of physio-chemical factors on high throughput
plant regeneration and micro-morpho-anatomy of shoots of Ormocarpum sennoides
(Willd.) DC, Acta Physiologiae Plantarum,
43(1), 5.
[38]. Somashekar, G., Sudhakar, U., Prakash, S.
G., Suresh, S., Srividya, S., & Rao, S. H., 2022, In-vitro antioxidant and
in-vitro anti-inflammatory activities of ethanolic leaves extract of Ormocarpum cochinchinense, Journal of Orofacial Sciences, 14(2),
134.
[39]. Aswathi, N. V., & Thomas, T. D., 2023,
Transverse thin cell layer (tTCL) technology: A promising tool for
micropropagation of Centratherum punctatum Cass. In Vitro Cellular &
Developmental Biology - Plant,
59(3), 340–353.
[40]. Sivakumar, N., Geetha, R. V., Priya, V.,
Gayathri, R., & Ganapathy, D., 2021, Targeted phytotherapy for reactive
oxygen species linked oral cancer, International
Journal of Dentistry and Oral Science, 8(1), 1425-1429.
[41]. Srinivasan, B. C., & Krishnan, R.,
2023, Immunohistological evidence of Ormocarpum sennoides DC extract in the
expression of Bax and Bcl2 in Wister rats with glucocorticoid-induced
osteoporosis, Journal of Anatomical
Society of India, 72(2), 93.
[42]. Subramanyam, V., & Narasimhan, S.,
2016, Osteoprotective effect of few Indian herbs: an update, Annals of SBV, 5(1), 43–51.
[43]. Ganapathy, D., Sekar, D., Preethi, A.,
& Shanmugam, R., 2021, Clinical impact of medicinal herbs in the treatment
of osteosarcoma, Annals of the
Romanian Society for Cell Biology, 2503-2508.
[44]. Balamurugan, S., Thanganila, G., Chitra,
V., Karthi, S., & Balagurusamy, K., 2023, Traditional bone setting for the
treatment of recurrent shoulder joint dislocation - A single case study. Retrieved July 24, 2023, from https://www.lcebyhkzz.cn/article/view/2023/918.pdf
[45]. Miranda, L. L., Guimarães-Lopes, V. de P.,
Altoé, L. S., Sarandy, M. M., Melo, F. C. S. A., Novaes, R. D., et al., 2019,
Plant extracts in the bone repair process: A systematic review. Mediators of Inflammation, 2019,
1296153.
[46]. Singh, P., Gupta, A., Qayoom, I., Singh,
S., & Kumar, A., 2020, Orthobiologics with phytobioactive cues: A paradigm
in bone regeneration. Biomedicine &
Pharmacotherapy, 130, 110754.
[47]. Kumar, M. D., John, K. M. M., &
Karthik, S., 2013, The bone fracture–healing potential of Ormocarpum cochinchinense methanolic extract on albino Wistar rats.
Journal of Herbs, Spices & Medicinal Plants, 19(1), 1-10.
[48]. Vennila Preethi, S., Geetha Gayathri, V.,
Jeffrey Calwin, J., Sharmila, S., Jayamani, J., & Sujitha, S., 2022,
Synthesis of silver nanoparticles from Mimosa pudica and bio-conjugation with
hydroxyapatite for orthopedic application. In: AIP Conference Proceedings,
2518, 050003. AIP Publishing. Available from: https://pubs.aip.org/aip/acp/article-abstract/2518/1/050003/2827766
[49]. Sathvika, K., Varghese,
S. S., & Rajeshkumar, S., 2021. Terminalia
chebula mediated silver nanoparticles and its antibacterial activity
against oral pathogens, Journal of
Pharmaceutical Research International, 33(62B), 339–350.
[50]. Thangavelu, L., Adil, A. H.,
Arshad, S., Devaraj, E., Mallineni, S. K., Sajja, R., Chakradhar, A., &
Karobari, M. I., 2021, Antimicrobial properties of silver nitrate nanoparticle
and its application in endodontics and dentistry: A review of literature, Journal of Nanomaterials, 2021(1),
9132714.
[51]. Dhir, S., Verma, R., Bhatt, S., Garg, V.,
& Dutt, R., 2023, Green synthesis, characterization, and biomedical
applications of copper and copper oxide nanoparticles of plant origin, Current Drug Therapy, 18(5), 391-406.
[52]. Cuong, H. N., Pansambal, S., Ghotekar, S.,
Oza, R., Thanh Hai, N. T., Viet, N. M., et al., 2022, New frontiers in the
plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and
their potential applications: A review. Environmental
Research, 203, 111858.
[53]. Felix, W. P., & Muthu, P., 2016,
Bioscaffolds impregnated with Ormocarpum
cochinchinense mediated Ag nanoparticles. In: 2016 International
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)
(pp. 3533-3535).
[54]. Neha, R., Sridevi, G.,
Selvaraj, J., & Preetha, S., 2021. Evaluation of anticancer effect of Aegle marmelos in human breast cancer
cells by in-vitro analysis, Journal of
Pharmaceutical Research International, 33(62A), 464–471.
[55]. Mbaebie, B. O., Edeoga, H. O., &
Afolayan, A. J., 2012, Phytochemical analysis and antioxidant activities of
aqueous stem bark extract of Schotia latifolia Jacq. Asian Pacific Journal
of Tropical Biomedicine, 2(2), 118-124.
[56]. Essiett, U. A., & Bassey, I. E., 2013,
Comparative phytochemical screening and nutritional potentials of the flowers
(petals) of Senna alata (L.) Roxb, Senna hirsuta (L.) Irwin and Barneby, and
Senna obtusifolia (L.) Irwin and Barneby (Fabaceae). Journal of Applied Pharmaceutical Science, 3(8), 97-101.
[57]. Falodun, A., 2010, Herbal medicine in Africa-distribution, standardization and prospects. Research Journal of Phytochemistry, 4(3), 154-161.