A Review of Biomedical Applications of Ormocarpum cochinchinense

Download Article

DOI: 10.21522/TIJPH.2013.12.04.Art058

Authors : Dhanraj Ganapathy, Priya Ganesan

Abstract:

Traditional bone-setting (TBS) techniques were widely used in India before the advent of modern orthopaedics. Among the plants used in these practices, Ormocarpum cochinchinense, a medicinal plant native to Southeast Asia, has shown promising therapeutic properties in treating bone-related ailments. This review explores the biomedical applications of Ormocarpum cochinchinense, particularly focusing on its role in orthopaedics and dentistry. Phytochemical studies have revealed that this plant is rich in bioactive compounds such as flavonoids, tannins, and alkaloids, which contribute to its antioxidant, anti-inflammatory, and antimicrobial properties. In orthopaedics, Ormocarpum cochinchinense has demonstrated significant potential in enhancing bone fracture healing, facilitating bone regeneration, and promoting osseous repair in preclinical studies. The plant has been shown to enhance calcium, phosphorus, and alkaline phosphatase levels, which are critical for bone repair. These properties position Ormocarpum cochinchinense as a promising candidate for developing novel treatments for bone fractures and other orthopaedic conditions. In the field of dentistry, Ormocarpum cochinchinense exhibits anti-inflammatory effects that may be beneficial in treating periodontal diseases such as periodontitis. Its antioxidant properties help reduce oxidative stress, a key factor in chronic inflammation and tissue degradation in periodontal conditions. Additionally, the plant shows potential as a bioscaffold for dental implants, promoting osseous regeneration and improving the healing process after dental surgeries. This review aims to provide a comprehensive analysis of the phytochemical profile of Ormocarpum cochinchinense and its potential applications in both orthopaedic and dental fields, offering insights into future therapeutic uses.

References:

[1].  Karunakaran, N., Maiti, S., Jayaraman, S., & Paulraj, J., 2023. Assessment of bone turnover markers prior to dental implant placement for osteoporosis patients: A case-control study, Annals of Dental Specialty, 11(2), 57–61.

[2].  Gillett, J. B., 1966, The Species of Ormocarpum Beauv. and Arthrocarpum Balf.f. (Leguminosae) in South-Western Asia and Africa (Excluding Madagascar), Kew Bulletin, 20(2), 323–55.

[3].  Hepsibah, A. H., & Jothi, G. J., 2016, A comparative study on the effect of solvents on the phytochemical profile and biological potential of Ormocarpum cochinchinense auct. Non (lour.) Merrill, International Journal of Pharmacy & Pharmaceutical Sciences, 9(1), 67.

[4].  Wang, H., Shan, K., Li, Y., Wu, S., Zhou, C., Tao, S., Wang, M, Kang, X., Zhou, L., Lyu, Z., L, i N., 2024, Therapeutic potential of Chinese medicinal herbs stimulating osteogenic differentiation of bone marrow-derived mesenchymal stem cells in osteoporosis. Frontiers in Pharmacology.31;15:1423555.

[5].  Silambarasan, R., & Ayyanar, M., 2015, An ethnobotanical study of medicinal plants in Palamalai region of Eastern Ghats, India, Journal of Ethnopharmacology, 172, 162–78.

[6].  Nyamboki, D. K., & Wanga, L. A., 2022, Review of the phytochemical and pharmacological studies of the genus Ormocarpum, Pharmacognosy Reviews, 16(32), 95–9.

[7].  Abe, R., & Ohtani, K., 2013, An ethnobotanical study of medicinal plants and traditional therapies on Batan Island, the Philippines, Journal of Ethnopharmacology, 145(2), 554–65.

[8].  Narayanan, A., Marimuthu, M., Mani, A., Vasu, G., Subhadra R., 2023, Studies on the Antimicrobial Activity of Ormocarpum cochinchinense Leaf Extract/PVA‐PVP Blended Polymer, Chemistry Select, 13;8(10):e202203512.

[9].  Bokhad, M. N., Rothe, S. P., 2012, Preliminary phytochemical investigation of Combretum albidum G. Don; An ignored medicinally important liana, Journal of Experimental Sciences, 6;3(3).

[10]. Saravanan, J. R., & Jayakumar, N. D., 2021, Green synthesis of copper oxide nanoparticles using aqueous extract of Ocimum sanctum and analysis of antimicrobial, anti-inflammatory, and cytotoxic activity of Ocimum sanctum copper oxide nanoparticles: An in vitro study, International Journal of Dentistry and Oral Science, 8(6), 2848–2852.

[11]. Lakshme, P. S., Roy, A., Sivaperumal, P., & Lakshmi, T., 2021, Exploration of antioxidant effects of crude extract of mangrove plant Avicennia marina, Journal of Pharmaceutical Research International, 33(62B), 321–329.

[12]. Gulzar, R. A., Ajitha, H. S., 2021, Comparative Evaluation on the Cytotoxicity of Moringa Oleifera Leaf Extract and Calcium Hydroxide on Peri-odontal Ligament Fibroblast Cells, International Journal of Dentistry and Oral Sciences, 30;8(05):2610-4.

[13]. Thirumal, S., Duraikannu, G., 2019, Fourier-transform Infrared Analysis and In Vitro Antibacterial Activity of Ormocarpum cochinchinense (Elumbotti), International Journal of Pharmaceutical & Biological Archive, Jun 15. Available from: https://papers.ssrn.com/abstract=3787238

[14]. Prescott, T. A. K., Kiapranis, R., & Maciver, S. K., 2012, Comparative ethnobotany and in-the-field antibacterial testing of medicinal plants used by the Bulu and inland Kaulong of Papua New Guinea, Journal of Ethnopharmacology, 139(2), 497–503.

[15]. Dilipan, E., Sivaperumal, P., Kamala, K., Ramachandran, M., & Vivekanandhan, P., 2023, Green synthesis of silver nanoparticles using seagrass Cymodocea serrulata (R. Br.) Asch. & Magnus, characterization, and evaluation of anticancer, antioxidant, and antiglycemic index, Biotechnology and Applied Biochemistry, 70(3), 1346-1356.

[16]. Darshinidevi, T., Suresh, V., Sivaperumal, P., & Dilipan, E., 2023, Synthesis of silver nanoparticles from Cymodocea rotundata leaf extract and their biological activities, Cureus, 15(11).

[17]. Kamto, E. L. D., Leitão, G. G., da Silva, V. A. D., Ferreira-Pereira, A., Ngo Mbing, J., & Pegnyemb, D. E., 2020, Bioactive non-polar compounds from Ormocarpum kirkii bark: A source of fungal multidrug resistance inhibitors, Revista Brasileira de Farmacognosi, 30(2), 177–82.

[18]. Hepsibah, A. H., Mala, M., & Jothi, G. J., 2017, Antimicrobial activity and TLC profiling of Clerodendrum phlomidis Linn. F leaf extract against multi-drug resistant clinical pathogens, International Journal of Pharmacy & Pharmaceutical Sciences, 9(9), 275.

[19]. Wilson, J. J., Harimuralikrishnaa, T., Sivakumar, T., Mahendran, S., Ponmanickam, P., Thangaraj, R., Sevarkodiyone, S., Alharbi, N. S., Kadaikunnan, S., Venkidasamy, B., & Thiruvengadam, M., 2023, Biogenic synthesis of silver nanoparticles using Pantoea stewartii and Priestia aryabhattai and their antimicrobial, larvicidal, histopathological, and biotoxicity potential, Bioengineering, 10(2), 248.

[20]. Govindarajan, M., & Benelli, G., 2016, One-pot fabrication of silver nanocrystals using Ormocarpum cochinchinense: Biophysical characterization of a potent mosquitocidal and toxicity on non-target mosquito predators, Journal of Asia-Pacific Entomology, 19(2), 377–85.

[21]. Sivakumar, T., & Gajalakshm, D., 2013, In vitro antioxidant and chemical constituents from the leaves of Ormocarpum cochinchinense Elumbotti, American Journal of Plant Physiology, 8(3), 114–22.

[22]. Arivukkarasu, R., Rajasekaran, A., 2021, Fingerprint Analysis of Herbal Raw Materials available in Market Belongs to Combretacea and Fabaceae family by HPTLC technique using antioxidant markers, Asian Journal of Pharmacy and Technology,11(2):130-4.

[23]. Gnanavel, V., Palanichamy, V., & Roopan, S. M., 2017. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116), Journal of Photochemistry and Photobiology B: Biology, 171, 133–38.

[24]. Abbasi, S., 2022, Biomimetic synthesis of nanoparticles: State-of-the-art, Journal of Nanostructure in Chemistry, 12(2), 593–608.

[25]. Rani, N., & Saini, K., 2022, Biogenic metal and metal oxides nanoparticles as anticancer agents: A review, IOP Conference Series: Materials Science and Engineering, 1225(1), 012043.

[26]. Nagarajan, D., 2019, In vitro antioxidant potential of endophytic fungi isolated from Enicostemma axillare (Lam.) Raynal and Ormocarpum cochinchinense (Lour.) Merr, Journal of Pharmacognosy and Phytochemistry, 8(1), 1356–63.

[27]. Muhammad, W., Abbasi, B. H., Hashmi, S. S., Haroon, M., Shah, M., 2018, A review on photocatalytic, antimicrobial, cytotoxic and other biological activities of phyto-fabricated copper nanoparticles, International Journal of Biosciences, 13(01), 320–37.

[28]. Nagarajan, D., & Pandian, R., 2018, Anti-cancer potentials of endophytic fungi isolated from Enicostemma axillare and Ormocarpum cochinchinense, Journal of Pharmacognosy and Phytochemistry, 7(3), 3186–91.

[29]. Mondal, A., Paul, P., Banerjee, S., 2022, Applications of metal oxide nanoparticles in cancer therapy. In Advances in Nanotechnology-Based Drug Delivery Systems, 1 (pp. 471-516).

[30]. Alizadeh, S. R., & Ebrahimzadeh, M. A., 2021. Characterization and anticancer activities of green synthesized CuO nanoparticles: A review, Anticancer Agents in Medicinal Chemistry, 21(12), 1529–43.

[31]. Obaid, M. A., Harbi, K. H., & Abd, A. N., 2021, Biosynthesis of CuO NPs and its anticancer activity on human colon cancer cell lines (HT-29), Journal of Physics: Conference Series, 1963(1), 012151.

[32]. Urasopon, N., Hamada, Y., Asaoka, K., Cherdshewasart, W., Malaivijitnond, S., 2007, Pueraria mirifica, a phytoestrogen-rich herb, prevents bone loss in orchidectomized rats. Maturitas, 20;56(3):322-31.

[33]. Leung, P. C., Siu, W. S., 2013, Herbal treatment for osteoporosis: a current review, Journal of Traditional and Complementary Medicine,1;3(2):82-7.

[34]. Vohra, K., Dureja, H., Garg, V., & Dutt, R., 2019, Current trends in phyto-cancer therapy using nanoparticles, Current Nanomedicine, 9(1), 30–45.

[35]. Selvaraj, B., & Ganapathy, D., 2024, Exploration of Sargassum wightii: Extraction, phytochemical analysis, and antioxidant potential of polyphenol, Cureus, 16(7).

[36]. Mathew, A. A., Asirvatham, R., Gowtham, A., & Pa, D., 2021, Study of in vitro anti-inflammatory and immunomodulatory effect of Ayurvedic plants–Murva. İstanbul Journal of Pharmacy, 51(3), 333-340.

[37]. Manokari, M., Priyadharshini, S., & Shekhawat, M. S., 2021, Influence of physio-chemical factors on high throughput plant regeneration and micro-morpho-anatomy of shoots of Ormocarpum sennoides (Willd.) DC, Acta Physiologiae Plantarum, 43(1), 5.

[38]. Somashekar, G., Sudhakar, U., Prakash, S. G., Suresh, S., Srividya, S., & Rao, S. H., 2022, In-vitro antioxidant and in-vitro anti-inflammatory activities of ethanolic leaves extract of Ormocarpum cochinchinense, Journal of Orofacial Sciences, 14(2), 134.

[39]. Aswathi, N. V., & Thomas, T. D., 2023, Transverse thin cell layer (tTCL) technology: A promising tool for micropropagation of Centratherum punctatum Cass. In Vitro Cellular & Developmental Biology - Plant, 59(3), 340–353.

[40]. Sivakumar, N., Geetha, R. V., Priya, V., Gayathri, R., & Ganapathy, D., 2021, Targeted phytotherapy for reactive oxygen species linked oral cancer, International Journal of Dentistry and Oral Science, 8(1), 1425-1429.

[41]. Srinivasan, B. C., & Krishnan, R., 2023, Immunohistological evidence of Ormocarpum sennoides DC extract in the expression of Bax and Bcl2 in Wister rats with glucocorticoid-induced osteoporosis, Journal of Anatomical Society of India, 72(2), 93.

[42]. Subramanyam, V., & Narasimhan, S., 2016, Osteoprotective effect of few Indian herbs: an update, Annals of SBV, 5(1), 43–51.

[43]. Ganapathy, D., Sekar, D., Preethi, A., & Shanmugam, R., 2021, Clinical impact of medicinal herbs in the treatment of osteosarcoma, Annals of the Romanian Society for Cell Biology, 2503-2508.

[44]. Balamurugan, S., Thanganila, G., Chitra, V., Karthi, S., & Balagurusamy, K., 2023, Traditional bone setting for the treatment of recurrent shoulder joint dislocation - A single case study. Retrieved July 24, 2023, from https://www.lcebyhkzz.cn/article/view/2023/918.pdf

[45]. Miranda, L. L., Guimarães-Lopes, V. de P., Altoé, L. S., Sarandy, M. M., Melo, F. C. S. A., Novaes, R. D., et al., 2019, Plant extracts in the bone repair process: A systematic review. Mediators of Inflammation, 2019, 1296153.

[46]. Singh, P., Gupta, A., Qayoom, I., Singh, S., & Kumar, A., 2020, Orthobiologics with phytobioactive cues: A paradigm in bone regeneration. Biomedicine & Pharmacotherapy, 130, 110754.

[47]. Kumar, M. D., John, K. M. M., & Karthik, S., 2013, The bone fracture–healing potential of Ormocarpum cochinchinense methanolic extract on albino Wistar rats. Journal of Herbs, Spices & Medicinal Plants, 19(1), 1-10.

[48]. Vennila Preethi, S., Geetha Gayathri, V., Jeffrey Calwin, J., Sharmila, S., Jayamani, J., & Sujitha, S., 2022, Synthesis of silver nanoparticles from Mimosa pudica and bio-conjugation with hydroxyapatite for orthopedic application. In: AIP Conference Proceedings, 2518, 050003. AIP Publishing. Available from: https://pubs.aip.org/aip/acp/article-abstract/2518/1/050003/2827766

[49]. Sathvika, K., Varghese, S. S., & Rajeshkumar, S., 2021. Terminalia chebula mediated silver nanoparticles and its antibacterial activity against oral pathogens, Journal of Pharmaceutical Research International, 33(62B), 339–350.

[50]. Thangavelu, L., Adil, A. H., Arshad, S., Devaraj, E., Mallineni, S. K., Sajja, R., Chakradhar, A., & Karobari, M. I., 2021, Antimicrobial properties of silver nitrate nanoparticle and its application in endodontics and dentistry: A review of literature, Journal of Nanomaterials, 2021(1), 9132714.

[51]. Dhir, S., Verma, R., Bhatt, S., Garg, V., & Dutt, R., 2023, Green synthesis, characterization, and biomedical applications of copper and copper oxide nanoparticles of plant origin, Current Drug Therapy, 18(5), 391-406.

[52]. Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Thanh Hai, N. T., Viet, N. M., et al., 2022, New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research, 203, 111858.

[53]. Felix, W. P., & Muthu, P., 2016, Bioscaffolds impregnated with Ormocarpum cochinchinense mediated Ag nanoparticles. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 3533-3535).

[54]. Neha, R., Sridevi, G., Selvaraj, J., & Preetha, S., 2021. Evaluation of anticancer effect of Aegle marmelos in human breast cancer cells by in-vitro analysis, Journal of Pharmaceutical Research International, 33(62A), 464–471.

[55]. Mbaebie, B. O., Edeoga, H. O., & Afolayan, A. J., 2012, Phytochemical analysis and antioxidant activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pacific Journal of Tropical Biomedicine, 2(2), 118-124.

[56]. Essiett, U. A., & Bassey, I. E., 2013, Comparative phytochemical screening and nutritional potentials of the flowers (petals) of Senna alata (L.) Roxb, Senna hirsuta (L.) Irwin and Barneby, and Senna obtusifolia (L.) Irwin and Barneby (Fabaceae). Journal of Applied Pharmaceutical Science, 3(8), 97-101.

[57]. Falodun, A., 2010, Herbal medicine in Africa-distribution, standardization and prospects. Research Journal of Phytochemistry, 4(3), 154-161.