Flavonoid Nanoparticles: Revolutionizing Cancer Treatment Strategies

Download Article

DOI: 10.21522/TIJPH.2013.12.04.Art051

Authors : Ramaiyan Velmurugan, Rajalakshmi subburam, Lokeshvar Ravikumar, Subhashini K, Sheshan A, Gnanaprakash K, Hashvitha P

Abstract:

Flavonoids, a widely distributed class of polyphenolic chemicals found in nature, have recently emerged as significant anticancer agents. Regrettably, the anticancer potential of dietary flavonoids is inadequate due to their limited solubility, absorption, and fast metabolism. Nanocarriers promote the body's ability to absorb flavonoids and utilize them. This review aims to assess studies regarding the potential therapeutic benefits of flavonoid nanoparticles. In an examination of English-language publications released on June 30, 2020, a search was conducted using CINAHL Plus, Cochrane, PubMed (including MEDLINE), and other relevant databases. Preclinical research is now where most studies are looking into flavonoid nanoparticles’ potential as anticancer agents by data from the Web of Science. A549 and MCF-7 breast cancer cells are the main subjects of this study. The cancer cells discussed are carcinoma cells, lung cancer cells, and HepG2 tumor cells. Moreover, flavonoid nanoparticles can augment cancer treatments' effectiveness by bolstering their anti-tumor characteristics. Reducing the negative impacts of drugs on the body’s physiological systems

References:

[1] Khan, H., Ullah, H., Martorell, M., Valdes, S. E., Belwal, T., Tejada, S., Sureda, A., Kamal, M. A., 2019. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin Cancer Biol, 57(4), 72-78.

[2] Kumar, S., Pandey, A. K., 2013. Chemistry and Biological Activities of Flavonoids: An Overview. Sci World J, 2013, 1-16.

[3] Procházková, D., Boušová, I., Wilhelmová, N., 2011. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82, 513-523.

[4] Serafini, M., Peluso, I., Raguzzini, A., 2010. Flavonoids as anti-inflammatory agents. Proc Nutr Soc, 69, 273-278.

[5] Gontijo, V. S., dos Santos, M. H., Viegas, C., Jr., 2017. Biological and Chemical Aspects of Natural Bioflavonoids from Plants: A Brief Review. Mini Rev Med Chem, 17, 834-862.

[6] Thilakarathna, S., Rupasinghe, H., 2013. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients, 5, 3367-3387.

[7] Cassidy, A., Minihane, A. M., 2017. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr, 105, 10-22.

[8] De Pace, R. C. C., Liu, X., Sun, M., Nie, S., Zhang, J., Cai, Q., Gao, W., Pan, X., Fan, Z., Wang, S., 2013. Anticancer activities of (-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J Liposome Res, 23, 187-196.

[9] Tan, B. J., Liu, Y., Chang, K. J., Lim, B. K. W., Chiu, G. N. C., 2012. Personally active nano micellar formulation of quercetin in the treatment of lung cancer. Int J Nanomed, 7, 651-661.

[10]   Jain, A. K., Thanki, K., Jain, S., 2013. Co-encapsulation of Tamoxifen and Quercetin in Polymeric Nanoparticles: Implications on Oral Bioavailability, Anti-tumour Efficacy, and Drug-Induced Toxicity. Mol Pharm, 10, 3459-3474.

[11]   Xu, G., Shi, H., Ren, L., Gou, H., Gong, D., Gao, X., Huang, N., 2015. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomed, 10, 2051-2063.

[12]   Wu, B., Liang, Y., Tan, Y., Xie, C., Shen, J., Zhang, M., Liu, X., Yang, L., Zhang, F., Liu, L., et al., 2016. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for treating liver cancer. Mater Sci Eng C, 59, 792-800.

[13]   Joshi, M. D., Patravale, V., Prabhu, R., 2015. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int J Nanomed, 10, 1001-1018.

[14]   Kothamasu, P., Kanumur, H., Ravur, N., Maddu, C., Parasuramrajam, R., Thangavel, S., 2012. Nanocapsules: The Weapons for Novel Drug Delivery Systems. Bioimpacts, 2, 71-81.

[15]   Jain, S., Hirst, D. G., O’Sullivan, J. M., 2012. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol, 85, 101-113.

[16]   Mu, H., Holm, R., 2018. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin Drug Deliv, 15, 771-785.

[17]   Mukherjee, S., Ghosh, S., Das, D. K., Chakraborty, P., Choudhury, S., Gupta, P., Adhikary, A., Dey, S., Chattopadhyay, S., 2015. Gold-conjugated green tea nanoparticles for enhanced anti-tumour activities and hepatoprotection—synthesis, characterization and in vitro evaluation. J Nutr Biochem, 26, 1283-1297.

[18]   Cai, Z. Y., Li, X. M., Liang, J. P., Xiang, L.P., Wang, K. R., Shi, Y. L., Yang, R., Shi, M., Ye, J. H., Lu, J. L., et al., 2018. Bioavailability of Tea Catechins and Its Improvement. Molecules, 23, 2346.

[19]   Lambert, J. D., Kennett, M. J., Sang, S., Reuhl, K. R., Ju, J., Yang, C. S., 2010. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem Toxicol, 48, 409-416.

[20]   Siddiqui, I. A., Adhami, V. M., Bharali, D. J., Hafeez, B. B., Asim, M., Khwaja, S. I., Ahmad, N., Cui, H., Mousa, S. A., Mukhtar, H., 2009. Introducing Nano chemoprevention as a Novel Approach for Cancer Control: Proof of Principle with Green Tea Polyphenol Epigallocatechin-3-Gallate. Cancer Res, 69, 1712-1716.

[21]   Peng, J., Liang, X., 2019. Progress in research on gold nanoparticles in cancer management. Medicine (Baltimore), 98, e15311.

[22]   Hsieh, D. S., Wang, H., Tan, S.W., Huang, Y.H., Tsai, C.Y., Yeh, M.K., Wu, C.J., 2011. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 32, 7633-7640.

[23]   Hsieh, D. S., Cheng, C. C., Wu, C. J., Yeh, M. K., 2012. The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system. Int J Nanomed, 7, 1623-1633.

[24]   Rocha, S., Generalov, R., Pereira, M. D. C., Peres, I., Juzenas, P., Coelho, M. A., 2011. Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention. Nanomedicine, 6, 79-87.

[25]   Peres, I., Rocha, S., Gomes, J., Morais, S., Pereira, M. C., Coelho, M., 2011. Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydr Polym, 86, 147-153.

[26]   Khan, N., Bharali, D. J., Adhami, V. M., Siddiqui, I. A., Cui, H., Shabana, S. M., Mousa, S. A., Mukhtar, H., 2014. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis, 35, 415-423.

[27]   Lin, Y. H., Chen, Z. R., Lai, C. H., Hsieh, C. H., Feng, C. L., 2015. Active Targeted Nanoparticles for Oral Administration of Gastric Cancer Therapy. Biomacromolecules, 16, 3021-3032.

[28]   Liao, B., Ying, H., Yu, C., Fan, Z., Zhang, W., Shi, J., Ying, H., Ravichandran, N., Xu, Y., Yin, J., et al., 2016. (-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumours in mice. Int J Pharm, 512, 22-31.

[29]   Srivastava, S., Somasagara, R.R., Hegde, M., Nishana, M., Tadi, S.K., Srivastava, M., Choudhary, B., Raghavan, S. C., 2016. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumour Regression by Activating Mitochondrial Pathway of Apoptosis. Sci. Rep., 6, 24049.

[30]   Niazvand, F., Orazizadeh, M., Khorsandi, L., Abbaspour, M., Mansouri, E., Khodadadi, A., 2019. Effects of Quercetin-Loaded Nanoparticles on MCF-7 Human Breast Cancer Cells. Medicina (Kaunas), 55, 114.

[31]   Tang, S. H., Li, R., Tan, J., Wang, Y., Jiang, Z. T., 2019. One pot synthesis of water-soluble quercetin derived multifunctional nanoparticles with photothermal and antioxidation capabilities. Colloids Surf B Biointerfaces, 183, 110429.

[32]   Lou, M., Zhang, L., Ji, P., Feng, F., Liu, J., Yang, C., Li, B., Wang, L., 2016. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed Pharm, 84, 1-9.

[33]   Wang, G., Wang, J. J., Chen, X. L., Du, L., Li, F., 2016. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release, 235, 276-290.

[34]   Li, J., Shi, M., Ma, B., Niu, R., Zhang, H., Kun, L., 2017. Anti-tumour activity and safety evaluation of nanoparticle-based delivery of quercetin through intravenous administration in mice. Mater Sci Eng C, 77, 803-810.

[35]   Ghosh, A., Ghosh, D., Sarkar, S., Mandal, A. K., Thakur Choudhury, S., Das, N., 2012. Anticarcinogenic activity of nanoencapsulated quercetin in combating diethylnitrosamine-induced hepatocarcinoma in rats. Eur J Cancer Prev, 21, 32-41.

[36]   Mandal, A. K., Ghosh, D., Sarkar, S., Ghosh, A., Swarnakar, S., Das, N., 2014. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine, 9, 2323-2337.

[37]   Ren, K. W., Li, Y. H., Wu, G., Ren, J. Z., Lu, H. B., Li, Z. M., Han, X. W., 2017. Quercetin nanoparticles display anti-tumour activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int J Oncol, 50, 1299-1311.

[38]   Pandey, P., Rahman, M., Bhatt, P. C., Beg, S., Paul, B., Hafeez, A., Al-Abbasi, F. A., Nadeem, M. S., Baothman, O., Anwar, F., et al., 2018. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 13, 849-870.

[39]   Wu, H., Wei, M., Xu, Y., Li, Y., Zhai, X., Su, P., Ma, Q., Zhang, H., 2022. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine, 17, 3751-3775.

[40]   Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., Moustaid-Moussa, N., 2014. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem, 25, 363-376.

[41]   Dora, C. L., Costa Silva, L. F., Mazzarino, L., Siqueira, J. M., Fernandes, D., Pacheco, L. K., Maioral, M. F., Santos-Silva, M. C., Muccillo Baisch, A. L., Assreuy, J., et al., 2016. Oral Delivery of a High Quercetin Payload Nanosized Emulsion: In Vitro and In Vivo Activity Against B16-F10 Melanoma. J Nanosci Nanotechnol, 16, 1275-1281.

[42]   Long, Q., Xie, Y., Huang, Y., Wu, Q., Zhang, H., Xiong, S., Liu, Y., Chen, L., Wei, Y., Zhao, X., et al., 2013. Induction of Apoptosis and Inhibition of Angiogenesis by PEGylated Liposomal Quercetin in Both Cisplatin-Sensitive and Cisplatin-Resistant Ovarian Cancers. J Biomed Nanotechnol, 9, 965-975.

[43]   Zhao, J., Liu, J., Wei, T., Ma, X., Cheng, Q., Huo, S., Zhang, C., Zhang, Y., Duan, X. L., Liang, X. J., et al., 2016. Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. Nanoscale, 8, 5126-5138.

[44]   Gao, X., Wang, B., Wei, X., Men, K., Zheng, F., Zhou, Y., Zheng, Y., Gou, M., Huang, M., Guo, G., et al., 2012, Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 4(12), 7021-7030.

[45]   Jain, A. S., Shah, S. M., Nagarsenker, M. S., Nikam, Y., Gude, R. P., Steiniger, F., Thamm, J., Fahr, A., 2013, Lipid Colloidal Carriers for Improvement of Anticancer Activity of Orally Delivered Quercetin: Formulation, Characterization and Establishing In Vitro–In Vivo Advantage. J. Biomed. Nanotechnol., 9(7), 1230-1240.

[46]   da Luz, C. M., Boyles, M. S. P., Falagan-Lotsch, P., Pereira, M. R., Tutumi, H. R., de Oliveira Santos, E., Martins, N. B., Himly, M., Sommer, A., Foissner, I., et al., 2017, Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J. Nanobiotechnol., 15(1), 11.

[47]   Luo, C. L., Liu, Y. Q., Wang, P., Song, C. H., Wang, K. J., Dai, L. P., Zhang, J. Y., Ye, H., 2016, The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 82, 595-605.

[48]   Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J., Hoyt, J. E., 1997, A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health. J. Altern. Complement. Med., 3(1), 7-12.

[49]   Rassu, G., Porcu, E. P., Fancello, S., Obinu, A., Senes, N., Galleri, G., Migheli, R., Gavini, E., Giunchedi, P., 2018, Intranasal Delivery of Genistein-Loaded Nanoparticles as a Potential Preventive System against Neurodegenerative Disorders. Pharmaceutics, 11(8), 8.

[50]   Zhang, H., Liu, G., Zeng, X., Wu, Y., Yang, C., Mei, L., Wang, Z., Huang, L., 2015, Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int. J. Nanomed., 10(7), 2461-2473.

[51]   Pool, H., Campos-Vega, R., Herrera-Hernández, M. G., García-Solis, P., García-Gasca, T., Sánchez, I. C., Luna-Bárcenas, G., Vergara-Castañeda, H., 2018, Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am. J. Transl. Res., 10(6), 2306-2323.

[52]   Spagnuolo, C., Russo, G. L., Orhan, I. E., Habtemariam, S., Daglia, M., Sureda, A., Nabavi, S. F., Devi, K. P., Loizzo, M. R., Tundis, R., et al., 2015, Genistein and Cancer: Current Status, Challenges, and Future Directions. Adv. Nutr., 6(3), 408-419.

[53]   Sacko, K., Thangavel, K., Shoyele, S. A., 2019, Codelivery of Genistein and miRNA-29b to A549 Cells Using Aptamer-Hybrid Nanoparticle Bioconjugates. Nanomaterials, 9(8), 1052.

[54]   Ghasemi, G. R., Mohammadi, M. R., Malekzadeh, K., 2020, Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxy methylated chitosan against acute leukemia lymphoma. Biomater. Res., 24(1), 9.

[55]   Hogan, F. S., Krishnegowda, N. K., Mikhailova, M., Kahlenberg, M. S., 2007, Flavonoid, Silibinin, Inhibits Proliferation and Promotes Cell-Cycle Arrest of Human Colon Cancer. J. Surg. Res., 143(1), 58-65.

[56]   Yazdi Rouholamini, S. E., Moghassemi, S., Maharat, Z., Hakamivala, A., Kashanian, S., Omidfar, K., 2018, Effect of silibinin-loaded nano-niosomal coated with trimethyl chitosan on miRNAs expression in 2D and 3D models of T47D breast cancer cell line. Artif. Cells Nanomed. Biotechnol., 46(3), 524-535.

[57]   Xu, P., Yin, Q., Shen, J., Chen, L., Yu, H., Zhang, Z., Li, Y., 2013, Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int. J. Pharm., 454(1), 21-30.

[58]   Gohulkumar, M., Gurushankar, K., Rajendra Prasad, N., Krishnakumar, N., 2014, Enhanced cytotoxicity and apoptosis-induced anticancer effect of silibinin-loaded nanoparticles in oral carcinoma (KB) cells. Mater. Sci. Eng. C, 41, 274-282.

[59]   Sajjadiyan, S. Z., Ghadernejad, H., Milani, A. T., Mohammadian, M., Abdolahpour, S., Taslimi, S., Moradi-Sardareh, H., Afrisham, R., Kooti, W., 2016, Preparation of silibinin loaded pegylatedniosomal nanoparticles and investigation of its effect on MCF-10A human breast cancer cell line. Der Pharm. Lett., 8(1), 70-75.

[60]   Sahibzada, M. U. K., Sadiq, A., Khan, S., Faidah, H. S., Ullah, N., Khurram, M., Amin, M. U., Haseeb, A., 2017, Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: An attempt to enhance its oral bioavailability. Drug Des. Devel. Ther., 11, 1453-1464.

[61]   Huo, M., Wang, H., Zhang, Y., Cai, H., Zhang, P., Li, L., Zhou, J., Yin, T., 2020, Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumour treatment through chemotherapy sensitization and microenvironment modulation. J. Control Release, 321, 198-210.

[62]   Jiang, M., He, K., Qiu, T., Sun, J., Liu, Q., Zhang, X., Zheng, H., 2020, Tumour-targeted delivery of silibinin and IPI-549 synergistically inhibit breast cancer by remodeling the microenvironment. Int. J. Pharm., 581, 119239.

[63]   Liu, Y., Xie, X., Hou, X., Shen, J., Shi, J., Chen, H., He, Y., Wang, Z., Feng, N., 2020, Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J. Nanobiotechnol., 18, 83.

[64]   Ding, S., Zhang, Z., Song, J., Cheng, X., Jiang, J., Jia, X., 2014, Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion. Int. J. Nanomed., 13, 2327–2333.

[65]   Das, S., Das, J., Samadder, A., Paul, A., Khuda-Bukhsh, A. R., 2013, Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: Mitochondria mediated apoptotic signaling cascades. Food Chem. Toxicol., 62, 670–680.

[66]   Bhattacharya, S., Mondal, L., Mukherjee, B., Dutta, L., Ehsan, I., Debnath, M. C., Gaonkar, R. H., Pal, M. M., Majumdar, S., 2018, Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomed., 14, 1905–1917.

[67]   Huang, Y., Zhao, X., Zu, Y., Wang, L., Deng, Y., Wu, M., Wang, H., 2019, Enhanced Solubility and Bioavailability of Apigenin via Preparation of Solid Dispersions of Mesoporous Silica Nanoparticles. Iran. J. Pharm. Res., 18, 168–182.

[68]   Salehi, B., Fokou, P., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., Sharifi-Rad, J., 2019, The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals, 12, 11.

[69]   Fuster, M. G., Carissimi, G., Montalbán, M. G., Víllora, G., 2020, Improving Anticancer Therapy with Naringenin-Loaded Silk Fibroin Nanoparticles. Nanomaterials, 10, 718.

[70]   Krishnakumar, N., Sulfikkarali, N. K., Manoharan, S., Venkatachalam, P., 2013, Raman spectroscopic investigation of the chemopreventive response of naringenin and its nanoparticles in DMBA-induced oral carcinogenesis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 115, 648–653.

[71]   Kumar, S. P., Birundha, K., Kaveri, K., Devi, K. T. R., 2015, Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. Int. J. Biol. Macromol., 78, 87–95.

[72]   Chaurasia, S., Patel, R. R., Vure, P., Mishra, B., 2017, Oral naringenin nanocarriers: Fabrication, optimization, pharmacokinetic and chemotherapeutic efficacy assessments. Nanomedicine, 12, 1243–1260.

[73]   Sulfikkarali, N., Krishnakumar, N., Manoharan, S., Nirmal, R. M., 2013, Chemopreventive Efficacy of Naringenin-Loaded Nanoparticles in 7,12-dimethylbenz(a)anthracene Induced Experimental Oral Carcinogenesis. Pathol. Oncol. Res., 19, 287–296.

[74]   Chaurasia, S., Patel, R. R., Vure, P., Mishra, B., 2018, Potential of Cationic-Polymeric Nanoparticles for Oral Delivery of Naringenin: In Vitro and In Vivo Investigations. J. Pharm. Sci., 107, 706–716.

[75]   Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., Imran, A., Orhan, I. E., Rizwan, M., Atif, M., et al., 2019, Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 112, 108612.

[76]   Lin, Y., Shi, R., Wang, X., Shen, H.-M., 2008, Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets, 8, 634–646.

[77]   Majumdar, D., Jung, K.-H., Zhang, H., Nannapaneni, S., Wang, X., Amin, A. R. M. R., Chen, Z., Chen, Z., Shin, D. M., 2014, Luteolin Nanoparticle in Chemoprevention: In Vitro and In Vivo Anticancer Activity. Cancer Prev. Res., 7, 65–73.

[78]   Wozniak, A., Napierala, M., Golasik, M., Herman, M., Walas, S., Piekoszewski, W., Szyfter, W., Szyfter, K., Golusinski, W., Baralkiewicz, D., et al., 2016, Metal concentrations in hair of patients with various head and neck cancers as a diagnostic aid. Biometals, 29, 81–93.

[79]   Szyfter, K., Napierala, M., Florek, E., Braakhuis, B., Takes, R. P., Rodrigo, J. P., Rinaldo, A., Silver, C. E., Ferlito, A., 2019, Molecular and health effects in the upper respiratory tract associated with tobacco smoking other than cigarettes. Int. J. Cancer, 144, 2635–2643.

[80]   Golasik, M., Jawie ń, W., Przybyłowicz, A., Szyfter, W., Herman, M., Golusi ński, W., Florek, E., Piekoszewski, W., 2015, Classification models based on the level of metals in hair and nails of laryngeal cancer patients: Diagnosis support or rather speculation? Metallomics, 7, 455–465.

[81]   Wu, C., Xu, Q., Chen, X., Liu, J., 2019, Delivery luteolin with folacin-modified nanoparticle for glioma therapy. Int. J. Nanomed., 14, 7515–7531.

[82]   Alshehri, S.; Imam, S. S.; Altamimi, M. A.; Hussain, A.; Shakeel, F.; Elzayat, E.; Mohsin, K.; Ibrahim, M.; Alanazi, F., 2020, Enhanced dissolution of luteolin by solid dispersion prepared by different methods: physicochemical characterization and antioxidant activity. ACS Omega, 5, 6461–6471.

[83]   Chen, A. Y.; Chen, Y. C., 2013, A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry, 138, 2099–2107.

[84]   Luo, H.; Jiang, B.; Li, B.; Li, Z.; Jiang, B. H.; Chen, Y. C., 2012, Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. International Journal of Nanomedicine, 7, 3951–3959.

[85]   Tu, L. Y., Bai, H. H., Cai, J. Y., Deng, S. P., 2016, The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: from macro to nano: Anticancer effect of kaempferol on SiHa cells. Scanning, 38, 644–653.

[86]   Colombo, M., Figueiró, F., de Fraga Dias, A., Teixeira, H. F., Battastini, A. M. O., Koester, L. S., 2018, Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. International Journal of Pharmaceutics, 543, 214–223.

[87]   Govindaraju, S., Roshini, A., Lee, M., Yun, K., 2019, Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. International Journal of Nanomedicine, 14, 5147–5157.

[88]   Khan, N., Syed, D. N., Ahmad, N., Mukhtar, H., 2013, Fisetin: A dietary antioxidant for health promotion. Antioxidants & Redox Signaling, 19, 151–162.

[89]   Ghosh, P., Singha Roy, A., Chaudhury, S., Jana, S. K., Chaudhury, K., Dasgupta, S., 2016, Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity. International Journal of Biological Macromolecules, 86, 408–417.

[90]   Feng, C., Yuan, X., Chu, K., Zhang, H., Ji, W., Rui, M., 2019, Preparation and optimization of poly(lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. International Journal of Biological Macromolecules, 125, 700–710.

[91]   Dobrzynska, M., Napierala, M., Florek, E., 2020, Flavonoid nanoparticles: A promising approach for cancer therapy. Biomolecules, 10(9), 1268.

[92]   Murali Iyangar, R.; Devaraj, E., 2020, Silibinin triggers the mitochondrial pathway of apoptosis in human oral squamous carcinoma cells. Asian Pacific Journal of Cancer Prevention, 21(7), 1877–1882.

[93]   L. A., Krishna Kumar, J., Shanmugam, R., 2024, Formulation of quercetin mouthwash and anti-microbial potential against critical pathogens: an in-vitro evaluation. Cureus, 16(1), e51688.

[94]   Muruganathan, N., Dhanapal, A. R., Baskar, V., Muthuramalingam, P., Selvaraj, D., Aara, H., Shiek Abdullah, M. Z., Sivanesan, I., 2022, Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: a review. Metabolites, 12(11), 1145.

[95]   Shanmugam, R., Tharani, M., Abullais, S. S., 2024, Black seed assisted synthesis, characterization, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles. BMC Complement Med Ther., 24(24):241.

[96]   Habeeb Rahuman, H. B., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., Thangavelu, S., Muthupandian, S., 2022, Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 16(4):115-144.

[97]   Wadhwa, R., Paudel, K. R., Chin, L. H., Hon, C. M., Madheswaran, T., Gupta G., Panneerselvam, J., Lakshmi, T., 2021, Anti-inflammatory and anticancer activities of Naringenin-loaded liquid crystalline nanoparticles in vitro. J Food Biochem. 45(1): e13572.