Flavonoid Nanoparticles: Revolutionizing Cancer Treatment Strategies
Abstract:
Flavonoids, a widely distributed
class of polyphenolic chemicals found in nature, have recently emerged as
significant anticancer agents. Regrettably, the anticancer potential of dietary
flavonoids is inadequate due to their limited solubility, absorption, and fast
metabolism. Nanocarriers promote the body's ability to absorb flavonoids and
utilize them. This review aims to assess studies regarding the potential
therapeutic benefits of flavonoid nanoparticles. In an examination of
English-language publications released on June 30, 2020, a search was conducted
using CINAHL Plus, Cochrane, PubMed (including MEDLINE), and other relevant
databases. Preclinical research is now where most studies are looking into
flavonoid nanoparticles’ potential as anticancer agents by data from the Web of
Science. A549 and MCF-7 breast cancer cells are the main subjects of this
study. The cancer cells discussed are carcinoma cells, lung cancer cells, and
HepG2 tumor cells. Moreover, flavonoid nanoparticles can augment cancer
treatments' effectiveness by bolstering their anti-tumor characteristics.
Reducing the negative impacts of drugs on the body’s physiological systems
References:
[1]
Khan,
H., Ullah, H., Martorell, M., Valdes, S. E., Belwal, T., Tejada, S., Sureda,
A., Kamal, M. A., 2019. Flavonoids nanoparticles in cancer: Treatment,
prevention and clinical prospects. Semin Cancer Biol, 57(4), 72-78.
[2]
Kumar, S., Pandey, A. K., 2013. Chemistry and Biological Activities
of Flavonoids: An Overview. Sci World J, 2013, 1-16.
[3]
Procházková,
D., Boušová, I., Wilhelmová, N., 2011. Antioxidant and prooxidant properties of
flavonoids. Fitoterapia, 82, 513-523.
[4]
Serafini, M., Peluso, I., Raguzzini, A., 2010. Flavonoids as
anti-inflammatory agents. Proc Nutr Soc, 69, 273-278.
[5]
Gontijo, V. S., dos Santos, M. H., Viegas, C., Jr., 2017.
Biological
and Chemical Aspects of Natural Bioflavonoids from Plants: A Brief Review. Mini
Rev Med Chem, 17, 834-862.
[6]
Thilakarathna,
S., Rupasinghe, H., 2013. Flavonoid Bioavailability and Attempts for
Bioavailability Enhancement. Nutrients, 5, 3367-3387.
[7]
Cassidy,
A., Minihane, A. M., 2017. The role of metabolism (and the microbiome) in
defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr,
105, 10-22.
[8]
De
Pace, R. C. C., Liu, X., Sun, M., Nie, S., Zhang, J., Cai, Q., Gao, W., Pan,
X., Fan, Z., Wang, S., 2013. Anticancer activities of
(-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer
cells. J Liposome Res, 23, 187-196.
[9]
Tan,
B. J., Liu, Y., Chang, K. J., Lim, B. K. W., Chiu, G. N. C., 2012. Personally
active nano micellar formulation of quercetin in the treatment of lung cancer. Int
J Nanomed, 7, 651-661.
[10]
Jain,
A. K., Thanki, K., Jain, S., 2013. Co-encapsulation of Tamoxifen and Quercetin
in Polymeric Nanoparticles: Implications on Oral Bioavailability, Anti-tumour
Efficacy, and Drug-Induced Toxicity. Mol Pharm, 10, 3459-3474.
[11]
Xu,
G., Shi, H., Ren, L., Gou, H., Gong, D., Gao, X., Huang, N., 2015. Enhancing
the anti-colon cancer activity of quercetin by self-assembled micelles. Int
J Nanomed, 10, 2051-2063.
[12]
Wu,
B., Liang, Y., Tan, Y., Xie, C., Shen, J., Zhang, M., Liu, X., Yang, L., Zhang,
F., Liu, L., et al., 2016. Genistein-loaded nanoparticles of star-shaped
diblock copolymer mannitol-core PLGA–TPGS for treating liver cancer. Mater
Sci Eng C, 59, 792-800.
[13]
Joshi, M. D., Patravale, V., Prabhu, R., 2015. Polymeric nanoparticles
for targeted treatment in oncology: Current insights. Int J Nanomed, 10,
1001-1018.
[14]
Kothamasu,
P., Kanumur, H., Ravur, N., Maddu, C., Parasuramrajam, R., Thangavel, S., 2012.
Nanocapsules: The Weapons for Novel Drug Delivery Systems. Bioimpacts,
2, 71-81.
[15]
Jain,
S., Hirst, D. G., O’Sullivan, J. M., 2012. Gold nanoparticles as novel agents
for cancer therapy. Br J Radiol, 85, 101-113.
[16]
Mu,
H., Holm, R., 2018. Solid lipid nanocarriers in drug delivery: Characterization
and design. Expert Opin Drug Deliv, 15, 771-785.
[17]
Mukherjee,
S., Ghosh, S., Das, D. K., Chakraborty, P., Choudhury, S., Gupta, P., Adhikary,
A., Dey, S., Chattopadhyay, S., 2015. Gold-conjugated green tea nanoparticles
for enhanced anti-tumour activities and hepatoprotection—synthesis,
characterization and in vitro evaluation. J Nutr Biochem, 26, 1283-1297.
[18]
Cai,
Z. Y., Li, X. M., Liang, J. P., Xiang, L.P., Wang, K. R., Shi, Y. L., Yang, R.,
Shi, M., Ye, J. H., Lu, J. L., et al., 2018. Bioavailability of Tea Catechins
and Its Improvement. Molecules, 23, 2346.
[19]
Lambert, J. D., Kennett, M. J., Sang, S., Reuhl, K. R.,
Ju, J., Yang, C. S., 2010. Hepatotoxicity
of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem Toxicol,
48, 409-416.
[20]
Siddiqui,
I. A., Adhami, V. M., Bharali, D. J., Hafeez, B. B., Asim, M., Khwaja, S. I.,
Ahmad, N., Cui, H., Mousa, S. A., Mukhtar, H., 2009. Introducing Nano
chemoprevention as a Novel Approach for Cancer Control: Proof of Principle with
Green Tea Polyphenol Epigallocatechin-3-Gallate. Cancer Res, 69,
1712-1716.
[21]
Peng,
J., Liang, X., 2019. Progress in research on gold nanoparticles in cancer
management. Medicine (Baltimore), 98, e15311.
[22]
Hsieh,
D. S., Wang, H., Tan, S.W., Huang, Y.H., Tsai, C.Y., Yeh, M.K., Wu, C.J., 2011.
The treatment of bladder cancer in a mouse model by
epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 32,
7633-7640.
[23]
Hsieh, D. S., Cheng, C. C., Wu, C. J., Yeh, M. K., 2012. The preparation and
characterization of gold-conjugated polyphenol nanoparticles as a novel
delivery system. Int J Nanomed, 7, 1623-1633.
[24]
Rocha, S., Generalov, R., Pereira, M. D. C., Peres, I.,
Juzenas, P., Coelho, M. A., 2011. Epigallocatechin gallate-loaded polysaccharide
nanoparticles for prostate cancer chemoprevention. Nanomedicine, 6,
79-87.
[25]
Peres, I., Rocha, S., Gomes, J., Morais, S., Pereira, M. C.,
Coelho, M., 2011. Preservation
of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydr
Polym, 86, 147-153.
[26]
Khan, N., Bharali, D. J., Adhami, V. M., Siddiqui, I. A.,
Cui, H., Shabana, S. M., Mousa, S. A., Mukhtar, H., 2014. Oral administration of
naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG
effectively inhibits prostate cancer cell growth in a xenograft model.
Carcinogenesis, 35, 415-423.
[27]
Lin, Y. H., Chen, Z. R., Lai, C. H., Hsieh, C. H., Feng,
C. L., 2015. Active
Targeted Nanoparticles for Oral Administration of Gastric Cancer Therapy. Biomacromolecules,
16, 3021-3032.
[28]
Liao,
B., Ying, H., Yu, C., Fan, Z., Zhang, W., Shi, J., Ying, H., Ravichandran, N.,
Xu, Y., Yin, J., et al., 2016. (-)-Epigallocatechin gallate
(EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat
implanted human melanoma cell tumours in mice. Int J Pharm, 512, 22-31.
[29]
Srivastava, S., Somasagara, R.R., Hegde, M., Nishana, M.,
Tadi, S.K., Srivastava, M., Choudhary, B., Raghavan, S. C., 2016. Quercetin, a Natural
Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumour Regression
by Activating Mitochondrial Pathway of Apoptosis. Sci. Rep., 6, 24049.
[30]
Niazvand,
F., Orazizadeh, M., Khorsandi, L., Abbaspour, M., Mansouri, E., Khodadadi, A.,
2019. Effects of Quercetin-Loaded Nanoparticles on MCF-7 Human Breast Cancer
Cells. Medicina (Kaunas), 55, 114.
[31]
Tang, S. H., Li, R., Tan, J., Wang, Y., Jiang, Z. T.,
2019. One
pot synthesis of water-soluble quercetin derived multifunctional nanoparticles
with photothermal and antioxidation capabilities. Colloids Surf B
Biointerfaces, 183, 110429.
[32]
Lou, M., Zhang, L., Ji, P., Feng, F., Liu, J., Yang, C.,
Li, B., Wang, L., 2016. Quercetin
nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3
signaling pathway in human neuroglioma cells: In vitro and in vivo.
Biomed Pharm, 84, 1-9.
[33]
Wang, G., Wang, J. J., Chen, X. L., Du, L., Li, F., 2016.
Quercetin-loaded
freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in
vitro and in vivo. J Control Release, 235, 276-290.
[34]
Li, J., Shi, M., Ma, B., Niu, R., Zhang, H., Kun, L.,
2017. Anti-tumour
activity and safety evaluation of nanoparticle-based delivery of quercetin
through intravenous administration in mice. Mater Sci Eng C, 77,
803-810.
[35]
Ghosh,
A., Ghosh, D., Sarkar, S., Mandal, A. K., Thakur Choudhury, S., Das, N., 2012.
Anticarcinogenic activity of nanoencapsulated quercetin in combating
diethylnitrosamine-induced hepatocarcinoma in rats. Eur J Cancer Prev,
21, 32-41.
[36]
Mandal,
A. K., Ghosh, D., Sarkar, S., Ghosh, A., Swarnakar, S., Das, N., 2014.
Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls
diethylnitrosamine-induced carcinoma. Nanomedicine, 9, 2323-2337.
[37]
Ren, K. W., Li, Y. H., Wu, G., Ren, J. Z., Lu, H. B., Li,
Z. M., Han, X. W., 2017. Quercetin
nanoparticles display anti-tumour activity via proliferation inhibition and
apoptosis induction in liver cancer cells. Int J Oncol, 50, 1299-1311.
[38]
Pandey, P., Rahman, M., Bhatt, P. C., Beg, S., Paul, B.,
Hafeez, A., Al-Abbasi, F. A., Nadeem, M. S., Baothman, O., Anwar, F., et al.,
2018. Implication
of nano-antioxidant therapy for treatment of hepatocellular carcinoma using
PLGA nanoparticles of rutin. Nanomedicine, 13, 849-870.
[39]
Wu, H., Wei, M., Xu, Y., Li, Y., Zhai, X., Su, P., Ma,
Q., Zhang, H., 2022. PDA-Based
Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J
Nanomedicine, 17, 3751-3775.
[40]
Wang,
S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., Moustaid-Moussa, N., 2014.
Application of nanotechnology in improving bioavailability and bioactivity of
diet-derived phytochemicals. J Nutr Biochem, 25, 363-376.
[41]
Dora, C. L., Costa Silva, L. F., Mazzarino, L., Siqueira,
J. M., Fernandes, D., Pacheco, L. K., Maioral, M. F., Santos-Silva, M. C.,
Muccillo Baisch, A. L., Assreuy, J., et al., 2016. Oral Delivery of a High Quercetin
Payload Nanosized Emulsion: In Vitro and In Vivo Activity Against
B16-F10 Melanoma. J Nanosci Nanotechnol, 16, 1275-1281.
[42]
Long, Q., Xie, Y., Huang, Y., Wu, Q., Zhang, H., Xiong,
S., Liu, Y., Chen, L., Wei, Y., Zhao, X., et al., 2013. Induction of Apoptosis
and Inhibition of Angiogenesis by PEGylated Liposomal Quercetin in Both
Cisplatin-Sensitive and Cisplatin-Resistant Ovarian Cancers. J Biomed
Nanotechnol, 9, 965-975.
[43]
Zhao, J., Liu, J., Wei, T., Ma, X., Cheng, Q., Huo, S.,
Zhang, C., Zhang, Y., Duan, X. L., Liang, X. J., et al., 2016. Quercetin-loaded
nanomicelles to circumvent human castration-resistant prostate cancer in vitro
and in vivo. Nanoscale, 8, 5126-5138.
[44]
Gao,
X., Wang, B., Wei, X., Men, K., Zheng, F., Zhou, Y., Zheng, Y., Gou, M., Huang,
M., Guo, G., et al., 2012, Anticancer effect and mechanism of polymer
micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 4(12),
7021-7030.
[45]
Jain,
A. S., Shah, S. M., Nagarsenker, M. S., Nikam, Y., Gude, R. P., Steiniger, F.,
Thamm, J., Fahr, A., 2013, Lipid Colloidal Carriers for Improvement of
Anticancer Activity of Orally Delivered Quercetin: Formulation,
Characterization and Establishing In Vitro–In Vivo Advantage. J.
Biomed. Nanotechnol., 9(7), 1230-1240.
[46]
da
Luz, C. M., Boyles, M. S. P., Falagan-Lotsch, P., Pereira, M. R., Tutumi, H.
R., de Oliveira Santos, E., Martins, N. B., Himly, M., Sommer, A., Foissner,
I., et al., 2017, Poly-lactic acid nanoparticles (PLA-NP) promote physiological
modifications in lung epithelial cells and are internalized by clathrin-coated
pits and lipid rafts. J. Nanobiotechnol., 15(1), 11.
[47]
Luo,
C. L., Liu, Y. Q., Wang, P., Song, C. H., Wang, K. J., Dai, L. P., Zhang, J.
Y., Ye, H., 2016, The effect of quercetin nanoparticle on cervical cancer
progression by inducing apoptosis, autophagy and anti-proliferation via JAK2
suppression. Biomed. Pharmacother., 82, 595-605.
[48]
Kaufman,
P. B., Duke, J. A., Brielmann, H., Boik, J., Hoyt, J. E., 1997, A Comparative
Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and
Daidzein: Implications for Human Nutrition and Health. J. Altern.
Complement. Med., 3(1), 7-12.
[49]
Rassu,
G., Porcu, E. P., Fancello, S., Obinu, A., Senes, N., Galleri, G., Migheli, R.,
Gavini, E., Giunchedi, P., 2018, Intranasal Delivery of Genistein-Loaded
Nanoparticles as a Potential Preventive System against Neurodegenerative
Disorders. Pharmaceutics, 11(8), 8.
[50]
Zhang,
H., Liu, G., Zeng, X., Wu, Y., Yang, C., Mei, L., Wang, Z., Huang, L., 2015,
Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for
improved therapeutic effects in cervical cancer cells. Int. J. Nanomed.,
10(7), 2461-2473.
[51]
Pool,
H., Campos-Vega, R., Herrera-Hernández, M. G., García-Solis, P., García-Gasca,
T., Sánchez, I. C., Luna-Bárcenas, G., Vergara-Castañeda, H., 2018, Development
of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant
and antiproliferative properties on HT29 human colon cancer cells. Am. J.
Transl. Res., 10(6), 2306-2323.
[52]
Spagnuolo,
C., Russo, G. L., Orhan, I. E., Habtemariam, S., Daglia, M., Sureda, A.,
Nabavi, S. F., Devi, K. P., Loizzo, M. R., Tundis, R., et al., 2015, Genistein
and Cancer: Current Status, Challenges, and Future Directions. Adv. Nutr.,
6(3), 408-419.
[53]
Sacko,
K., Thangavel, K., Shoyele, S. A., 2019, Codelivery of Genistein and miRNA-29b
to A549 Cells Using Aptamer-Hybrid Nanoparticle Bioconjugates. Nanomaterials,
9(8), 1052.
[54]
Ghasemi,
G. R., Mohammadi, M. R., Malekzadeh, K., 2020, Synthesizing efficacious
genistein in conjugation with superparamagnetic Fe3O4 decorated with
bio-compatible carboxy methylated chitosan against acute leukemia lymphoma. Biomater.
Res., 24(1), 9.
[55]
Hogan,
F. S., Krishnegowda, N. K., Mikhailova, M., Kahlenberg, M. S., 2007, Flavonoid,
Silibinin, Inhibits Proliferation and Promotes Cell-Cycle Arrest of Human Colon
Cancer. J. Surg. Res., 143(1), 58-65.
[56]
Yazdi
Rouholamini, S. E., Moghassemi, S., Maharat, Z., Hakamivala, A., Kashanian, S.,
Omidfar, K., 2018, Effect of silibinin-loaded nano-niosomal coated with
trimethyl chitosan on miRNAs expression in 2D and 3D models of T47D breast
cancer cell line. Artif. Cells Nanomed. Biotechnol., 46(3), 524-535.
[57]
Xu,
P., Yin, Q., Shen, J., Chen, L., Yu, H., Zhang, Z., Li, Y., 2013, Synergistic
inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles
containing TPGS. Int. J. Pharm., 454(1), 21-30.
[58]
Gohulkumar,
M., Gurushankar, K., Rajendra Prasad, N., Krishnakumar, N., 2014, Enhanced
cytotoxicity and apoptosis-induced anticancer effect of silibinin-loaded
nanoparticles in oral carcinoma (KB) cells. Mater. Sci. Eng. C, 41,
274-282.
[59]
Sajjadiyan,
S. Z., Ghadernejad, H., Milani, A. T., Mohammadian, M., Abdolahpour, S.,
Taslimi, S., Moradi-Sardareh, H., Afrisham, R., Kooti, W., 2016, Preparation of
silibinin loaded pegylatedniosomal nanoparticles and investigation of its
effect on MCF-10A human breast cancer cell line. Der Pharm. Lett., 8(1),
70-75.
[60]
Sahibzada,
M. U. K., Sadiq, A., Khan, S., Faidah, H. S., Ullah, N., Khurram, M., Amin, M.
U., Haseeb, A., 2017, Fabrication, characterization and in vitro evaluation of
silibinin nanoparticles: An attempt to enhance its oral bioavailability. Drug
Des. Devel. Ther., 11, 1453-1464.
[61]
Huo,
M., Wang, H., Zhang, Y., Cai, H., Zhang, P., Li, L., Zhou, J., Yin, T., 2020,
Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for
effective anti-tumour treatment through chemotherapy sensitization and
microenvironment modulation. J. Control Release, 321, 198-210.
[62]
Jiang,
M., He, K., Qiu, T., Sun, J., Liu, Q., Zhang, X., Zheng, H., 2020,
Tumour-targeted delivery of silibinin and IPI-549 synergistically inhibit
breast cancer by remodeling the microenvironment. Int. J. Pharm., 581,
119239.
[63]
Liu,
Y., Xie, X., Hou, X., Shen, J., Shi, J., Chen, H., He, Y., Wang, Z., Feng, N.,
2020, Functional oral nanoparticles for delivering silibinin and
cryptotanshinone against breast cancer lung metastasis. J. Nanobiotechnol.,
18, 83.
[64]
Ding,
S., Zhang, Z., Song, J., Cheng, X., Jiang, J., Jia, X., 2014, Enhanced
bioavailability of apigenin via preparation of a carbon nanopowder solid
dispersion. Int. J. Nanomed., 13, 2327–2333.
[65]
Das,
S., Das, J., Samadder, A., Paul, A., Khuda-Bukhsh, A. R., 2013, Efficacy of
PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced
skin cancer of mice: Mitochondria mediated apoptotic signaling cascades. Food
Chem. Toxicol., 62, 670–680.
[66]
Bhattacharya,
S., Mondal, L., Mukherjee, B., Dutta, L., Ehsan, I., Debnath, M. C., Gaonkar,
R. H., Pal, M. M., Majumdar, S., 2018, Apigenin loaded nanoparticle delayed
development of hepatocellular carcinoma in rats. Nanomed., 14,
1905–1917.
[67]
Huang,
Y., Zhao, X., Zu, Y., Wang, L., Deng, Y., Wu, M., Wang, H., 2019, Enhanced
Solubility and Bioavailability of Apigenin via Preparation of Solid Dispersions
of Mesoporous Silica Nanoparticles. Iran. J. Pharm. Res., 18, 168–182.
[68]
Salehi,
B., Fokou, P., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N.,
Sharifi-Rad, J., 2019, The Therapeutic Potential of Naringenin: A Review of
Clinical Trials. Pharmaceuticals, 12, 11.
[69]
Fuster,
M. G., Carissimi, G., Montalbán, M. G., Víllora, G., 2020, Improving Anticancer
Therapy with Naringenin-Loaded Silk Fibroin Nanoparticles. Nanomaterials,
10, 718.
[70]
Krishnakumar,
N., Sulfikkarali, N. K., Manoharan, S., Venkatachalam, P., 2013, Raman
spectroscopic investigation of the chemopreventive response of naringenin and
its nanoparticles in DMBA-induced oral carcinogenesis. Spectrochim. Acta A
Mol. Biomol. Spectrosc., 115, 648–653.
[71]
Kumar,
S. P., Birundha, K., Kaveri, K., Devi, K. T. R., 2015, Antioxidant studies of
chitosan nanoparticles containing naringenin and their cytotoxicity effects in
lung cancer cells. Int. J. Biol. Macromol., 78, 87–95.
[72]
Chaurasia,
S., Patel, R. R., Vure, P., Mishra, B., 2017, Oral naringenin nanocarriers:
Fabrication, optimization, pharmacokinetic and chemotherapeutic efficacy
assessments. Nanomedicine, 12, 1243–1260.
[73]
Sulfikkarali,
N., Krishnakumar, N., Manoharan, S., Nirmal, R. M., 2013, Chemopreventive
Efficacy of Naringenin-Loaded Nanoparticles in 7,12-dimethylbenz(a)anthracene
Induced Experimental Oral Carcinogenesis. Pathol. Oncol. Res., 19,
287–296.
[74]
Chaurasia,
S., Patel, R. R., Vure, P., Mishra, B., 2018, Potential of Cationic-Polymeric
Nanoparticles for Oral Delivery of Naringenin: In Vitro and In Vivo
Investigations. J. Pharm. Sci., 107, 706–716.
[75]
Imran,
M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., Imran,
A., Orhan, I. E., Rizwan, M., Atif, M., et al., 2019, Luteolin, a flavonoid, as
an anticancer agent: A review. Biomed. Pharmacother., 112, 108612.
[76]
Lin,
Y., Shi, R., Wang, X., Shen, H.-M., 2008, Luteolin, a Flavonoid with Potential
for Cancer Prevention and Therapy. Curr. Cancer Drug Targets, 8,
634–646.
[77]
Majumdar,
D., Jung, K.-H., Zhang, H., Nannapaneni, S., Wang, X., Amin, A. R. M. R., Chen,
Z., Chen, Z., Shin, D. M., 2014, Luteolin Nanoparticle in Chemoprevention: In
Vitro and In Vivo Anticancer Activity. Cancer Prev. Res., 7,
65–73.
[78]
Wozniak,
A., Napierala, M., Golasik, M., Herman, M., Walas, S., Piekoszewski, W.,
Szyfter, W., Szyfter, K., Golusinski, W., Baralkiewicz, D., et al., 2016, Metal
concentrations in hair of patients with various head and neck cancers as a
diagnostic aid. Biometals, 29, 81–93.
[79]
Szyfter,
K., Napierala, M., Florek, E., Braakhuis, B., Takes, R. P., Rodrigo, J. P.,
Rinaldo, A., Silver, C. E., Ferlito, A., 2019, Molecular and health effects in
the upper respiratory tract associated with tobacco smoking other than
cigarettes. Int. J. Cancer, 144, 2635–2643.
[80]
Golasik,
M., Jawie ń, W., Przybyłowicz, A., Szyfter, W., Herman, M., Golusi ński, W.,
Florek, E., Piekoszewski, W., 2015, Classification models based on the level of
metals in hair and nails of laryngeal cancer patients: Diagnosis support or
rather speculation? Metallomics, 7, 455–465.
[81]
Wu,
C., Xu, Q., Chen, X., Liu, J., 2019, Delivery luteolin with folacin-modified
nanoparticle for glioma therapy. Int. J. Nanomed., 14, 7515–7531.
[82]
Alshehri,
S.; Imam, S. S.; Altamimi, M. A.; Hussain, A.; Shakeel, F.; Elzayat, E.;
Mohsin, K.; Ibrahim, M.; Alanazi, F., 2020, Enhanced dissolution of luteolin by
solid dispersion prepared by different methods: physicochemical
characterization and antioxidant activity. ACS Omega, 5, 6461–6471.
[83]
Chen,
A. Y.; Chen, Y. C., 2013, A review of the dietary flavonoid, kaempferol on
human health and cancer chemoprevention. Food Chemistry, 138, 2099–2107.
[84]
Luo,
H.; Jiang, B.; Li, B.; Li, Z.; Jiang, B. H.; Chen, Y. C., 2012, Kaempferol
nanoparticles achieve strong and selective inhibition of ovarian cancer cell
viability. International Journal of Nanomedicine, 7, 3951–3959.
[85]
Tu,
L. Y., Bai, H. H., Cai, J. Y., Deng, S. P., 2016, The mechanism of kaempferol
induced apoptosis and inhibited proliferation in human cervical cancer SiHa
cell: from macro to nano: Anticancer effect of kaempferol on SiHa cells. Scanning,
38, 644–653.
[86]
Colombo,
M., Figueiró, F., de Fraga Dias, A., Teixeira, H. F., Battastini, A. M. O.,
Koester, L. S., 2018, Kaempferol-loaded mucoadhesive nanoemulsion for
intranasal administration reduces glioma growth in vitro. International
Journal of Pharmaceutics, 543, 214–223.
[87]
Govindaraju,
S., Roshini, A., Lee, M., Yun, K., 2019, Kaempferol conjugated gold
nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer
cells. International Journal of Nanomedicine, 14, 5147–5157.
[88]
Khan,
N., Syed, D. N., Ahmad, N., Mukhtar, H., 2013, Fisetin: A dietary antioxidant
for health promotion. Antioxidants & Redox Signaling, 19, 151–162.
[89]
Ghosh,
P., Singha Roy, A., Chaudhury, S., Jana, S. K., Chaudhury, K., Dasgupta, S.,
2016, Preparation of albumin based nanoparticles for delivery of fisetin and
evaluation of its cytotoxic activity. International Journal of Biological
Macromolecules, 86, 408–417.
[90]
Feng,
C., Yuan, X., Chu, K., Zhang, H., Ji, W., Rui, M., 2019, Preparation and
optimization of poly(lactic acid) nanoparticles loaded with fisetin to improve
anti-cancer therapy. International Journal of Biological Macromolecules,
125, 700–710.
[91]
Dobrzynska,
M., Napierala, M., Florek, E., 2020, Flavonoid nanoparticles: A promising
approach for cancer therapy. Biomolecules, 10(9), 1268.
[92]
Murali
Iyangar, R.; Devaraj, E., 2020, Silibinin triggers the mitochondrial pathway of
apoptosis in human oral squamous carcinoma cells. Asian Pacific Journal of
Cancer Prevention, 21(7), 1877–1882.
[93]
L.
A., Krishna Kumar, J., Shanmugam, R., 2024, Formulation of quercetin mouthwash
and anti-microbial potential against critical pathogens: an in-vitro
evaluation. Cureus, 16(1), e51688.
[94]
Muruganathan,
N., Dhanapal, A. R., Baskar, V., Muthuramalingam, P., Selvaraj, D., Aara, H.,
Shiek Abdullah, M. Z., Sivanesan, I., 2022, Recent updates on source,
biosynthesis, and therapeutic potential of natural flavonoid luteolin: a
review. Metabolites, 12(11), 1145.
[95]
Shanmugam, R., Tharani, M., Abullais, S. S., 2024, Black seed
assisted synthesis, characterization, free radical scavenging, antimicrobial
and anti-inflammatory activity of iron oxide nanoparticles. BMC
Complement Med Ther., 24(24):241.
[96] Habeeb
Rahuman, H. B., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R.,
Subbarayalu, R., Thangavelu, S., Muthupandian, S., 2022, Medicinal plants
mediated the green synthesis of silver nanoparticles and their biomedical
applications. IET Nanobiotechnol. 16(4):115-144.
[97] Wadhwa, R.,
Paudel, K. R., Chin, L. H., Hon, C. M., Madheswaran, T., Gupta G.,
Panneerselvam, J., Lakshmi, T., 2021, Anti-inflammatory and anticancer
activities of Naringenin-loaded liquid crystalline nanoparticles in vitro. J
Food Biochem. 45(1): e13572.