Nanotheranostics: A Light at the End of a Tunnel: A Review

Download Article

DOI: 10.21522/TIJPH.2013.12.04.Art049

Authors : Yesoda Aniyan K, Krithika C. L, Anuradha Ganesan

Abstract:

Nanotheranostics encompasses the combined efforts of diagnostic imaging and therapy in one system. It is also a science of which adequate awareness and research are still lagging. It is a type of personalized medicine, wherein molecular understanding of the disease and conforming the treatment, is based on the patients’ genes, proteins and metabolites. It uses nano-sized particles in various polymer conjugations, dendrimers, micelles, liposomes, metal and inorganic nanoparticles, carbon nanotubes, and nanoparticles of biodegradable polymers for uninterrupted, restrained and targeted co-delivery of agents. A current literature search of the entire database was performed using MEDLINE/PubMed/ Cochrane with “nano theranostics”, “nano theranostics in dentistry”, “nano theranostics in imaging” and “nano theranostics in diagnosis and therapy” as keywords, in March 2019. Current literature has forayed into cancer detection and management, diagnostic imaging as well and autoimmune disease remedies. This review of literature aspires to address the importance of such an approach, a boon to Oral Medicine and Radiology.

References:

[1].  Kim, T., Lee, S., Chen, X., 2013. Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn.13 (3):257–269.

[2].  Mahesh, K. P., 2018. Nanotheranostics-Novel Modality for Integrating Diagnosis and Therapy for Oral Cancer. Acta Scientific Dental Sciences. 2 (9): 57-58.

[3].  Silva, C., Pinho, J., Lopes, J., Almeida, A., Gaspar, M., Reis, C., 2019. Current Trends in Cancer Nano-theranostics: Metallic, Polymeric, and Lipid-Based Systems. Pharmaceutics.11: 22.

[4].  Xue, X., Huang, Y., Bo, R., Jia, B., Wu, H., Yuan, Y., Wang, Z., Ma, Z., Jing, D., Xu, X., Yu, W., Lin, T. Y., Li, Y., 2018. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat Commun. 7;9(1):3653.

[5].  Eyvazzadeh, N, Shakeri-Zadeh, A, Fekrazad, R, Amini, E., Ghaznavi, H., Kamran Kamrava S., 2017. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers Med Sci. 32(7):1469-1477.

[6].  Abiodun-Solanke, I., Ajayi, D., Arigbede, A., 2014. Nanotechnology and its application in dentistry. Ann Med Health Sci Res. 4 (Suppl 3):S171-7.

[7].  Wang, L. S., Chuang, M. C., Ho, J. A., 2012. Nanotheranostics--A review of recent publications. Int J Nanomedicine.7:4679-95.

[8].  Xia, Q., Chen, Z., Zhou, Y., Liu, R., 2019. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer. Nanotheranostics 2;3(2):156-165.

[9].  Vadivel, J. K, Govindarajan, M, Somasundaram, E, Muthukrishnan, A., 2019, Mast cell expression in oral lichen planus: A systematic review. J Investig Clin Dent. 10: e12457. doi:10.1111/jicd.12457113.

[10].  Peng, X et al.2008. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine.3(3): 311–321.

[11]. Rogers, W. J., Basu P.2005. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis.178(1):67-73.

[12]. Gharagozloo, M., Majewski, S., Foldvari, M., 2015. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. Nanomedicine. May;11(4):1003-18. 

[13]. Serra, P., Santamaria, P., 2015. Nanoparticle-based autoimmune disease therapy. Clin Immunol.160(1):3-13. 

[14]. Badea, I., Virtanen, C., Verrall, R. E., Rosenberg, A., Foldvari, M., 2012. Effect of topical interferon-γ gene therapy using gemini nanoparticles on pathophysiological markers of cutaneous scleroderma in Tsk/+ mice. Gene Ther.19(10):978-87. 

[15]. Rao, V, Bowman, S., 2013. Latest advances in connective tissue disorders. Ther Adv Musculoskelet Dis. 5(4):234-49.

[16]. Klippstein, R., Pozo, D., 2010. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine: Nanotechnology, Biology, and Medicine. 6: 523-529.

[17]. Lutterotti, A., Yousef, S., Sputtek, A., Stürner, K. H., Stellmann, J. P., Breiden, P., Reinhardt, S., Schulze, C., Bester, M., Heesen, C., Schippling, S., Miller, S. D, Sospedra, M, Martin, R., 2013. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med. 5;5(188):188ra75. 

[18]. Tsai, S. S., Yamanouchi, A., Clemente-Casares, X., Wang Serra, P., Yang, Y., Medarova, Z. M., Santamaria, A. P., 2010. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32:568-580.

[19]. Look, M., Saltzman, W. M., Craft, J., Fahmy, T. M., 2014, The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus. Biomaterials.35(3):1089-95.

[20]. Clemente-Casares, X., Tsai, S., Huang, C., Santamaria, P., 2012. Antigen-specific therapeutic approaches in Type 1 diabetes. Cold Spring Harb Perspect Med. 2(2): a007773.

[21]. Yesoda Aniyan K , Krithika C.L,Anuradha G,Kannan A,Swathi K.V. (2022). A systematic review of randomized controlled trials on the Efficacy of purslane for the treatment of systemic disorders. International Journal of Chemical and Biochemical Sciences. 21: 219-223

[22]. Anuradha Ganesan, et al., 2024. Exploring the Relationship between Psychoneuroimmunology and Oral Diseases: A Comprehensive Review and Analysis. Journal of Lifestyle Medicine.14(1):13-19.