Impact of COVID-19 Pandemic on Antimicrobial Resistance: A Review of Trends and Antibiotic Patterns in India
Abstract:
The pandemic situation caused by SARS-CoV2
had a severe influence on the health system all over the world. After two and
half years of this situation, the WHO has downgraded the COVID-19 pandemic and
has declared that it is no longer a global health threat. Though the COVID-19
infection has reduced around the world, the irrational intake of antibiotics
for the past 3 years has aggravated the antimicrobial resistance (AMR)
globally. In this review, we examined the pattern of reported AMR during the
pandemic in India and also highlighted antibiotic susceptibility during the
pandemic situation. An online search was carried out to include all the
original articles that were published in India on antimicrobial resistance and
COVID-19 from March 2020 to May 2023 in the following databases: PUBMED,
SCOPUS, EMBASE, Cochrane, Web of Science, and Google Scholar; Key
antimicrobial-resistant findings were identified from 12 relevant studies.
Among the gram-negative bacteria, the prevalent antimicrobial-resistant
bacteria were A. baumanii and K. pneumonia followed by E. coli. The predominant
resistant gram-positive bacteria were S. aureus. Around 50% of the
Acinetobacter spp were carbapenem-resistant. Multidrug-resistant K. pneumonia, A.
baumannii
and E. coli were also reported. Increased intake of antibiotics during the
COVID-19 pandemic may have increased the virulence of the superbug by showing
resistance to various drugs. Judicious use of antibiotics, public awareness
campaigns on antibiotic usage, and improved hygiene practices, both in
healthcare settings and in the community can help in reducing the transmission
of infections and subsequently decreasing antimicrobial resistance.
References:
[1]. WHO COVID-19 dashboard. 2024. Available from https://data.who.int/dashboards/covid19/cases?n=c
[2]. Afshinnekoo,
E., Bhattacharya, C., Burguete-García, A., Castro-Nallar, E., Deng, Y., Desnues,
C., et al., 2021, On behalf of the MetaSUB Consortium. COVID-19 drug practices
risk antimicrobial resistance evolution. Lancet,
2(4): E135-136. https://doi.org/10.1016/S2666-5247(21)00039-2
[3]. Malik,
S. S., & Mundra, S., 2022, Increasing consumption of antibiotics during the
COVID-19 Pandemic: Implications for patient health and emerging anti-microbial
resistance. Antibiotics, 12(1): 45. http://doi.org/10.3390/antibiotics12010045
[4]. Garg,
S. K., 2021, Antibiotic misuse during COVID-19 Pandemic: A Recipe for Disaster.
Indian J Crit Care Med, 25(6): 617-619.
http://doi.org/10.5005/jp-journals-10071-23862
[5]. Welle,
D., 2022, Pandemic worsened antimicrobial resistance in India. Available from https://www.hindustantimes.com/lifestyle/health/pandemic-worsened-antimicrobial-resistance-in-india-101666961896111.html
[6]. Chindhalore,
C. A., Dakhale, G. N., Gajbhiye, S. V., & Gupta, A. V., 2022, Prescription pattern
for antimicrobials and the potential predictors for antibiotics among patients with
COVID-19: A retrospective observational study. J. Clin. Diagnostic Res., 16(9): FC15-FC19. http://doi.org/10.7860/JCDR/2022/56961.16874
[7]. de
Souza, G. H. A., de Oliveira, A. R., Barbosa, M. S., Rossato, L., da Silva
Barbosa, K., & Simionatto, S. J., 2023. Infect.
Public Health, 16: 1184–1192. http://doi.org/10.1016/j.jiph.2023.05.017
[8]. Seethalakshmi,
P. S., Charity, O. J., Giakoumis, T., Kiran,
G. S., Sriskandan, S., Voulvoulis, N., et al., 2022, Delineating the impact
of COVID-19 on antimicrobial resistance: An Indian perspective. Sci Total Enviro, 20: 818-151702. https://doi.org/10.1016/j.scitotenv.2021.151702
[9]. Vijay,
S., Bansal, N., Rao, B. K., Veeraraghavan, B., Rodrigues, C., Wattal,
C., et al., 2021, Secondary infections in hospitalized COVID-19 patients:
Indian experience. Infect Drug Resist,
14: 1893-1903. http://doi.org/10.2147/IDR.S299774
[10]. Juliana,
A., Ramya, S., Leela, K. V., & Anusha, 2022, Prevalence and antimicrobial
susceptibility pattern of secondary Gram-negative bacteria isolated from severe
acute respiratory syndrome coronavirus disease 2 patients in a tertiary care
hospital. J Pure Appl Microbiol,
16(4): 2514-2520. https://doi.org/10.22207/JPAM.16.4.13
[11]. Rajni,
E., Garg, V. K., Bacchani, D., Sharma,
R., Vohra, R., Mamoria, V., & et al., 2021, Prevalence of bloodstream
infections and their aetiology in COVID-19 patients admitted in a Tertiary Care
Hospital in Jaipur. Indian J Crit Care Med,
25(4): 369–373. http://doi.org/10.5005/jp-journals-10071-23781
[12]. Khurana,
S., Singh, P., Sharad, N., Kiro, V. V., Rastogi, N., Lathwal,
A., et al., 2021, Profile of co-infections & secondary infections in
COVID-19 patients at a dedicated COVID-19 facility of a tertiary care Indian
hospital: Implication on antimicrobial resistance. Indian J Med Microbiol, 39(2): 147-153. http://doi.org/10.1016/j.ijmmb.2020.10.014
[13]. Bhaskaran,
S., 2022, Profile of bacterial infections and antimicrobial resistance in
patients with COVID-19 in a Tertiary Care Hospital, J Res Med Dent Sci, 10(1): 452-455.
[14]. Palanisamy,
N., Vihari, N., Meena, D. S., Kumar,
D., Midha, N., Tak, V., & et al., 2021, Clinical profile
of bloodstream infections in COVID-19 patients: A retrospective cohort study. BMC Infect Dis., 21(1): 933. http://doi.org/10.1186/s12879-021-06647-x
[15]. Boorgula,
S. Y., Yelamanchili, S., Kottapalli, P., & Naga, M. D., 2022, An update on
secondary bacterial and fungal infections and their antimicrobial resistance
pattern (AMR) in covid-19 confirmed patients. J Lab Physicians, 14(3): 260-264. http://doi.org/10.1055/s-0041-1741438
[16]. Raksha,
K., & Gopinath, P., 2021, ‘Double Trouble’–Antimicrobial resistance and
COVID-19, A study on health care associated infections and multidrug resistant
organisms in critical care units during the Global pandemic. J Acad Clin Microbiol, 23: 14-17.
[17]. Saini,
V., Nirmal, K., Ahmad, N., Das, S., & Singh, N. P., 2022, Microbiological
profile and their antibiogram of bloodstream infections amongst first and
second surge of the COVID-19 patients in a tertiary care hospital. J Family Med Prim Care, 11: 7367-71. http://doi.org/10.4103/jfmpc.jfmpc_770_22.
Epub 2022 Dec 16
[18]. Sreenath,
K., Batra, P., Vinayaraj, E. V., Bhatia, R., SaiKiran,
K. V. P., Singh, V., & et al., 2021,
Coinfections with other respiratory pathogens among patients with COVID-19. MicrobiolSpectrs, 9(1): e00163-21. http://doi.org/10.1128/Spectrum.00163-21
[19]. Saxena,
S., & Aggarwal, P., 2023, Tracking annual antimicrobial resistance at a
tertiary care hospital amidst raging COVID-19 pandemic. MAMC J Med Sci, 9: 35-43. http://doi.org/10.4103/jfmpc.jfmpc_2339_20
[20]. Sarathi,
S., Behera, B., Mahapatra, A., Mohapatra, S., Jena, J., & Nayak, S., 2023,
Microbiological characterization and clinical facets of Elizabethkingia bloodstream
infections in a tertiary care hospital of eastern India. Infect Drug Resist., 16: 3257-3267. https://doi.org/10.2147/IDR.S409121
[21]. Dhar,
E., Urs, T. A., & Manthravadi, K. K., 2023, Antimicrobial susceptibility
profile of methicillin resistant Staphylococcus
aureus (MRSA) isolates in a tertiary care hospital, Mysuru, India. Indian
J Public Health Res Dev, 14(2): 88-93. https://doi.org/10.37506/ijphrd.v14i2.19073
[22]. Langford,
B. J., So, M., Simeonova, M., Leung, V., Lo, J., Kan, T., et al., 2023,
Antimicrobial resistance in patients with COVID-19: a systematic review and meta-analysis.
Lancet Microbe, 4(3): e179-e191. https://doi.org/10.1016/S2666-5247(22)00355-X
[23]. Langford,
B. J., So, M., Raybardhan, S., Leung, V.,
Westwood, D., MacFadden, D. R., et al., 2020, Bacterial
co-infection and secondary infection in patients with COVID-19: a living rapid
review and meta-analysis. Clin Microbiol Infect., 26(12): 1622-1629.
http://doi.org/10.1016/j.cmi.2020.07.016
[24]. Rehman,
S., 2023, A parallel and silent emerging pandemic: Antimicrobial resistance
(AMR) amid COVID-19 pandemic. J Infect
Public Health, 16(4): 611-617. http://doi.org/10.1016/j.jiph.2023.02.021
[25]. Alhazzani,
W., Møller, M. H., Arabi, Y. M., Loeb,
M., Gong, M. N., & Eddy Fan, 2019, Surviving Sepsis Campaign:
guidelines on the management of critically ill adults with Coronavirus Disease (COVID-19).
Intensive Care Med., 46(5): 854-887. http://doi.org/10.1007/s00134-020-06022-5
[26]. Elmahi,
O. K., Uakkas, S., Olalekan, B. Y., Damilola,
I. A., Adedeji, O. J., Hasan, M. M., et al., 2022, Antimicrobial
resistance and one health in the post COVID-19 era: What should health students
learn?. Antimicrob Resist Infect Control, 11(1): 58. http://doi.org/10.1186/s13756-022-01099-7
[27]. Monteiro,
R. C., Malta, R. C. R., Rodrigues, G. L., Ramos, G. L. P. A., & Nascimento,
J. D. S., 2023, Acinetobacter baumannii: a known pathogen, a new
problem. Germs, 13(4): 381-384. http://doi.org/10.18683/germs.2023.1408
[28]. Asif,
M., Alvi, I. A., & Rehman, S. U., 2018, Insight into Acinetobacter baumannii: pathogenesis, global resistance,
mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist, 11: 1249-1260. http://doi.org/10.2147/IDR.S166750
[29]. Puzniak,
L., Bauer, K. A., Yu, K. C., Moise,
P., Finelli, L., Ye, G., & et al., 2021, Effect of
inadequate empiric antibacterial therapy on hospital outcomes in
SARS-CoV-2-positive and-negative US patients with a positive bacterial culture:
a multicenter evaluation from March to November 2020. Open Forum Infect Dis, 8(6): p. ofab232. http://doi.org/10.1093/ofid/ofab232
[30]. Chen,
N., Zhou, M., Dong, X., Qu, J., Gong, F., Han,
Y., & et al., 2020, Epidemiological and clinical characteristics of 99
cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.
Lancet, 395(10223): 507-13. http://doi.org/10.1016/S0140-6736(20)30211-7
[31]. Bahceci,
I., Yildiz, I. E., Duran, O. F., Soztanaci,
U. S., Harbawi, Z. K., Senol, F. F., et al., 2022, Secondary bacterial
infection rates among patients with COVID-19. Cureus, 14(2): e22363. http://doi.org/10.7759/cureus.22363
[32]. Sharifipour,
E., Shams, S., Esmkhani, M., Khodadadi,
J., Fotouhi-Ardakani, R., Koohpaei, A., et al., 2020, Evaluation of bacterial
co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis., 20(1): 1-7. http://doi.org/10.1186/s12879-020-05374-z
[33]. World
Health Organization. WHO bacterial
priority pathogens list, 2024. Available from https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1
[34]. Bazaid,
A. S., Barnawi, H., Qanash, H., Alsaif, G., Aldarhami, A., Gattan, H., et al.,
2022, Bacterial coinfection and antibiotic resistance profiles among
hospitalized COVID-19 Patients. Microorganisms,
10(3): 495. http://doi.org/10.3390/microorganisms10030495
[35]. Farah,
S. M., Alshehri, M. A., Alfawaz, T. S., Alasmeri, F. A., Alageel, A. A., Alshahrani,
D. A., 2022, Trends in antimicrobial susceptibility patterns in King Fahad
Medical City, Riyadh, Saudi Arabia. Saudi
Med. J., 40: 252. http://doi.org/10.15537/smj.2019.3.23947
[36]. Wang,
Q., Zhang, P., Zhao, D., Jiang, Y., Zhao, F., Wang, Y., & et al., 2018,
Emergence of tigecycline resistance in Escherichia
coli co-producing MCR-1 and NDM-5 during tigecycline salvage
treatment. Infect Drug Resist, 11: 2241-2248.
http://doi.org/10.2147/IDR.S179618
[37]. Gonzalez,
L. J., & Vila, A. J., 2012, Carbapenem resistance in Elizabeth kingiameningoseptica is
mediated by metallo-β-lactamase BlaB. Antimicrob
Agents Chemother, 56(4): 1686-92. http://doi.org/10.1128/AAC.05835-11
[38]. Singh,
S., Sahu, C., Patel, S. S., Singh, S., & Ghoshal, U., 2020, Clinical
profile, susceptibility patterns, speciation and follow up of infections by Elizabethkingia species: study on a rare
nosocomial pathogen from an intensive care unit of north India. New Microbes New Infect, 38: 100798. http://doi.org/10.1016/j.nmni.2020.100798
[39]. Kavanagh,
K. T., & Cormier, L. E., 2022, Success and failures in MRSA infection
control during the COVID-19 pandemic. Antimicrob
Resist Infect Control , 11: 118. http://doi.org/10.1186/s13756-022-01158-z
[40]. Huttner,
B. D., Catho, G., Pano-Pardo, J. R., Pulcini, C., & Schouten, J., 2020,
COVID-19: don't neglect antimicrobial stewardship principles. Clin
Microbiol Infect, 26(7):
808-810. http://doi.org/10.1016/j.cmi.2020.04.024