Impact of COVID-19 Pandemic on Antimicrobial Resistance: A Review of Trends and Antibiotic Patterns in India

Download Article

DOI: 10.21522/TIJPH.2013.12.04.Art042

Authors : Saramma Mini Jacob, M. K. Kalaivani, Palaniyandi Velusamy

Abstract:

The pandemic situation caused by SARS-CoV2 had a severe influence on the health system all over the world. After two and half years of this situation, the WHO has downgraded the COVID-19 pandemic and has declared that it is no longer a global health threat. Though the COVID-19 infection has reduced around the world, the irrational intake of antibiotics for the past 3 years has aggravated the antimicrobial resistance (AMR) globally. In this review, we examined the pattern of reported AMR during the pandemic in India and also highlighted antibiotic susceptibility during the pandemic situation. An online search was carried out to include all the original articles that were published in India on antimicrobial resistance and COVID-19 from March 2020 to May 2023 in the following databases: PUBMED, SCOPUS, EMBASE, Cochrane, Web of Science, and Google Scholar; Key antimicrobial-resistant findings were identified from 12 relevant studies. Among the gram-negative bacteria, the prevalent antimicrobial-resistant bacteria were A. baumanii and K. pneumonia followed by E. coli. The predominant resistant gram-positive bacteria were S. aureus. Around 50% of the Acinetobacter spp were carbapenem-resistant. Multidrug-resistant K. pneumonia, A. baumannii and E. coli were also reported. Increased intake of antibiotics during the COVID-19 pandemic may have increased the virulence of the superbug by showing resistance to various drugs. Judicious use of antibiotics, public awareness campaigns on antibiotic usage, and improved hygiene practices, both in healthcare settings and in the community can help in reducing the transmission of infections and subsequently decreasing antimicrobial resistance.

References:

[1].  WHO COVID-19 dashboard. 2024. Available from https://data.who.int/dashboards/covid19/cases?n=c

[2].  Afshinnekoo, E., Bhattacharya, C., Burguete-García, A., Castro-Nallar, E., Deng, Y., Desnues, C., et al., 2021, On behalf of the MetaSUB Consortium. COVID-19 drug practices risk antimicrobial resistance evolution. Lancet, 2(4): E135-136. https://doi.org/10.1016/S2666-5247(21)00039-2

[3].  Malik, S. S., & Mundra, S., 2022, Increasing consumption of antibiotics during the COVID-19 Pandemic: Implications for patient health and emerging anti-microbial resistance. Antibiotics, 12(1): 45. http://doi.org/10.3390/antibiotics12010045

[4].  Garg, S. K., 2021, Antibiotic misuse during COVID-19 Pandemic: A Recipe for Disaster. Indian J Crit Care Med, 25(6): 617-619. http://doi.org/10.5005/jp-journals-10071-23862

[5].  Welle, D., 2022, Pandemic worsened antimicrobial resistance in India. Available from https://www.hindustantimes.com/lifestyle/health/pandemic-worsened-antimicrobial-resistance-in-india-101666961896111.html

[6].  Chindhalore, C. A., Dakhale, G. N., Gajbhiye, S. V., & Gupta, A. V., 2022, Prescription pattern for antimicrobials and the potential predictors for antibiotics among patients with COVID-19: A retrospective observational study. J. Clin. Diagnostic Res., 16(9): FC15-FC19. http://doi.org/10.7860/JCDR/2022/56961.16874

[7].  de Souza, G. H. A., de Oliveira, A. R., Barbosa, M. S., Rossato, L., da Silva Barbosa, K., & Simionatto, S. J., 2023. Infect. Public Health, 16: 1184–1192. http://doi.org/10.1016/j.jiph.2023.05.017

[8].  Seethalakshmi, P. S., Charity, O. J., Giakoumis, T., Kiran, G. S., Sriskandan, S., Voulvoulis, N., et al., 2022, Delineating the impact of COVID-19 on antimicrobial resistance: An Indian perspective. Sci Total Enviro, 20: 818-151702. https://doi.org/10.1016/j.scitotenv.2021.151702

[9].  Vijay, S., Bansal, N., Rao, B. K., Veeraraghavan, B., Rodrigues, C., Wattal, C., et al., 2021, Secondary infections in hospitalized COVID-19 patients: Indian experience. Infect Drug Resist, 14: 1893-1903. http://doi.org/10.2147/IDR.S299774

[10]. Juliana, A., Ramya, S., Leela, K. V., & Anusha, 2022, Prevalence and antimicrobial susceptibility pattern of secondary Gram-negative bacteria isolated from severe acute respiratory syndrome coronavirus disease 2 patients in a tertiary care hospital. J Pure Appl Microbiol, 16(4): 2514-2520. https://doi.org/10.22207/JPAM.16.4.13

[11]. Rajni, E., Garg, V. K., Bacchani, D., Sharma, R., Vohra, R., Mamoria, V., & et al., 2021, Prevalence of bloodstream infections and their aetiology in COVID-19 patients admitted in a Tertiary Care Hospital in Jaipur. Indian J Crit Care Med, 25(4): 369–373. http://doi.org/10.5005/jp-journals-10071-23781

[12]. Khurana, S., Singh, P., Sharad, N., Kiro, V. V., Rastogi, N., Lathwal, A., et al., 2021, Profile of co-infections & secondary infections in COVID-19 patients at a dedicated COVID-19 facility of a tertiary care Indian hospital: Implication on antimicrobial resistance. Indian J Med Microbiol, 39(2): 147-153. http://doi.org/10.1016/j.ijmmb.2020.10.014

[13]. Bhaskaran, S., 2022, Profile of bacterial infections and antimicrobial resistance in patients with COVID-19 in a Tertiary Care Hospital, J Res Med Dent Sci, 10(1): 452-455.

[14]. Palanisamy, N., Vihari, N., Meena, D. S., Kumar, D., Midha, N., Tak, V., & et al., 2021, Clinical profile of bloodstream infections in COVID-19 patients: A retrospective cohort study. BMC Infect Dis., 21(1): 933. http://doi.org/10.1186/s12879-021-06647-x

[15]. Boorgula, S. Y., Yelamanchili, S., Kottapalli, P., & Naga, M. D., 2022, An update on secondary bacterial and fungal infections and their antimicrobial resistance pattern (AMR) in covid-19 confirmed patients. J Lab Physicians, 14(3): 260-264. http://doi.org/10.1055/s-0041-1741438

[16]. Raksha, K., & Gopinath, P., 2021, ‘Double Trouble’–Antimicrobial resistance and COVID-19, A study on health care associated infections and multidrug resistant organisms in critical care units during the Global pandemic. J Acad Clin Microbiol, 23: 14-17.

[17]. Saini, V., Nirmal, K., Ahmad, N., Das, S., & Singh, N. P., 2022, Microbiological profile and their antibiogram of bloodstream infections amongst first and second surge of the COVID-19 patients in a tertiary care hospital. J Family Med Prim Care, 11: 7367-71. http://doi.org/10.4103/jfmpc.jfmpc_770_22. Epub 2022 Dec 16

[18]. Sreenath, K., Batra, P., Vinayaraj, E. V., Bhatia, R., SaiKiran, K. V. P., Singh, V., & et al., 2021, Coinfections with other respiratory pathogens among patients with COVID-19. MicrobiolSpectrs, 9(1): e00163-21. http://doi.org/10.1128/Spectrum.00163-21

[19]. Saxena, S., & Aggarwal, P., 2023, Tracking annual antimicrobial resistance at a tertiary care hospital amidst raging COVID-19 pandemic. MAMC J Med Sci, 9: 35-43. http://doi.org/10.4103/jfmpc.jfmpc_2339_20

[20]. Sarathi, S., Behera, B., Mahapatra, A., Mohapatra, S., Jena, J., & Nayak, S., 2023, Microbiological characterization and clinical facets of Elizabethkingia bloodstream infections in a tertiary care hospital of eastern India. Infect Drug Resist., 16: 3257-3267. https://doi.org/10.2147/IDR.S409121

[21]. Dhar, E., Urs, T. A., & Manthravadi, K. K., 2023, Antimicrobial susceptibility profile of methicillin resistant Staphylococcus aureus (MRSA) isolates in a tertiary care hospital, Mysuru, India. Indian J Public Health Res Dev, 14(2): 88-93. https://doi.org/10.37506/ijphrd.v14i2.19073

[22]. Langford, B. J., So, M., Simeonova, M., Leung, V., Lo, J., Kan, T., et al., 2023, Antimicrobial resistance in patients with COVID-19: a systematic review and meta-analysis. Lancet Microbe, 4(3): e179-e191. https://doi.org/10.1016/S2666-5247(22)00355-X

[23]. Langford, B. J., So, M., Raybardhan, S., Leung, V., Westwood, D., MacFadden, D. R., et al., 2020, Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect., 26(12): 1622-1629. http://doi.org/10.1016/j.cmi.2020.07.016

[24]. Rehman, S., 2023, A parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. J Infect Public Health, 16(4): 611-617. http://doi.org/10.1016/j.jiph.2023.02.021

[25]. Alhazzani, W., Møller, M. H., Arabi, Y. M., Loeb, M., Gong, M. N., & Eddy Fan, 2019, Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease (COVID-19). Intensive Care Med., 46(5): 854-887. http://doi.org/10.1007/s00134-020-06022-5

[26]. Elmahi, O. K., Uakkas, S., Olalekan, B. Y., Damilola, I. A., Adedeji, O. J., Hasan, M. M., et al., 2022, Antimicrobial resistance and one health in the post COVID-19 era: What should health students learn?. Antimicrob Resist Infect Control, 11(1): 58. http://doi.org/10.1186/s13756-022-01099-7

[27]. Monteiro, R. C., Malta, R. C. R., Rodrigues, G. L., Ramos, G. L. P. A., & Nascimento, J. D. S., 2023, Acinetobacter baumannii: a known pathogen, a new problem. Germs, 13(4): 381-384. http://doi.org/10.18683/germs.2023.1408

[28]. Asif, M., Alvi, I. A., & Rehman, S. U., 2018, Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist, 11: 1249-1260. http://doi.org/10.2147/IDR.S166750

[29]. Puzniak, L., Bauer, K. A., Yu, K. C., Moise, P., Finelli, L., Ye, G., & et al., 2021, Effect of inadequate empiric antibacterial therapy on hospital outcomes in SARS-CoV-2-positive and-negative US patients with a positive bacterial culture: a multicenter evaluation from March to November 2020. Open Forum Infect Dis, 8(6): p. ofab232. http://doi.org/10.1093/ofid/ofab232

[30]. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., & et al., 2020, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 395(10223): 507-13. http://doi.org/10.1016/S0140-6736(20)30211-7

[31]. Bahceci, I., Yildiz, I. E., Duran, O. F., Soztanaci, U. S., Harbawi, Z. K., Senol, F. F., et al., 2022, Secondary bacterial infection rates among patients with COVID-19. Cureus, 14(2): e22363. http://doi.org/10.7759/cureus.22363

[32]. Sharifipour, E., Shams, S., Esmkhani, M., Khodadadi, J., Fotouhi-Ardakani, R., Koohpaei, A., et al., 2020, Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis., 20(1): 1-7. http://doi.org/10.1186/s12879-020-05374-z

[33]. World Health Organization. WHO bacterial priority pathogens list, 2024. Available from https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1

[34]. Bazaid, A. S., Barnawi, H., Qanash, H., Alsaif, G., Aldarhami, A., Gattan, H., et al., 2022, Bacterial coinfection and antibiotic resistance profiles among hospitalized COVID-19 Patients. Microorganisms, 10(3): 495. http://doi.org/10.3390/microorganisms10030495

[35]. Farah, S. M., Alshehri, M. A., Alfawaz, T. S., Alasmeri, F. A., Alageel, A. A., Alshahrani, D. A., 2022, Trends in antimicrobial susceptibility patterns in King Fahad Medical City, Riyadh, Saudi Arabia. Saudi Med. J., 40: 252. http://doi.org/10.15537/smj.2019.3.23947

[36]. Wang, Q., Zhang, P., Zhao, D., Jiang, Y., Zhao, F., Wang, Y., & et al., 2018, Emergence of tigecycline resistance in Escherichia coli co-producing MCR-1 and NDM-5 during tigecycline salvage treatment. Infect Drug Resist, 11: 2241-2248. http://doi.org/10.2147/IDR.S179618

[37]. Gonzalez, L. J., & Vila, A. J., 2012, Carbapenem resistance in Elizabeth kingiameningoseptica is mediated by metallo-β-lactamase BlaB. Antimicrob Agents Chemother, 56(4): 1686-92. http://doi.org/10.1128/AAC.05835-11

[38]. Singh, S., Sahu, C., Patel, S. S., Singh, S., & Ghoshal, U., 2020, Clinical profile, susceptibility patterns, speciation and follow up of infections by Elizabethkingia species: study on a rare nosocomial pathogen from an intensive care unit of north India. New Microbes New Infect, 38: 100798. http://doi.org/10.1016/j.nmni.2020.100798

[39]. Kavanagh, K. T., & Cormier, L. E., 2022, Success and failures in MRSA infection control during the COVID-19 pandemic. Antimicrob Resist Infect Control , 11: 118. http://doi.org/10.1186/s13756-022-01158-z

[40]. Huttner, B. D., Catho, G., Pano-Pardo, J. R., Pulcini, C., & Schouten, J., 2020, COVID-19: don't neglect antimicrobial stewardship principles. Clin Microbiol Infect, 26(7): 808-810. http://doi.org/10.1016/j.cmi.2020.04.024