Prevalence of Multi-Drug Resistant Bacterial Isolates in Healthcare Environments

Download Article

DOI: 10.21522/TIJPH.2013.12.04.Art007

Authors : Pasiyappazham Ramasamy, Kiran Kumar Mandapati, Chinnaiyan Uma, Paramasivam Sivagurunathan, Suhita Senapati, Yagniyasree Manogaran

Abstract:

To evaluate and measure the frequency of multi-drug resistance bacterial isolates in various healthcare environments. This study employed the disc diffusion susceptibility test to assess the antibiotic resistance of Acinetobacter, E. coli, Klebsiella sp., and Pseudomonas sp. to carbapenem, extended-spectrum β-lactamase (ESBL), and colistin. In the present study, Acinetobacter was generally found resistant to carbapenem at 72% and 71% at 75 µg/ml and minimum for Carbapenem + Colistin at 11% at 150 µg/ml. E. coli counts of the antibiotic-resistant carbapenem samples were 85% and 71% at 150 µg/ml and the lowest in colistin 12% at 225 µg/ml. The Klebsiella isolates obtained were highly sensitive to carbapenem (98%) at 150 µg/ml, followed by 75 µg/ml (96%) and 225 µg/ml (92%). Low colistin resistance was also observed (7%). The evaluation presented in Pseudomonas sp. of the antibiotic-resistant carbapenem samples was high at 47 at 225 µg/ml, and minimum in ESBL + Colistin at 5% at 150 µg/ml. Klebsiella (92%), Acinetobacter (71%), E. coli (64%), and Pseudomonas sp. (47%) were highly sensitive to 75 µg/ml carbapenem. The MICs of carbapenem-resistant Acinetobacter were shown in the 6.45 (OD values) at 75 µg/mL. Carbapenem and ESBL antibiotic-resistant Klebsiella were found at OD values of 9.14, 9.74, 9.61, and 3.45, 3.21 3.67, (OD values) at 75, 150, and 225 µg/mL, respectively, and the highest susceptibility was observed with Carbapenem 9.74 at 150 µg/mL. The ternary colour frequency of the graph indicates that Klebsiella sp. showed good susceptibility to carbapenem, carbapenem + ESBL, carbapenem, and colistin. Carbapenem is a highly effective therapy against infections caused by antibiotic-resistant Klebsiella sp.

References:

[1].   Prestinaci, F., Pezzotti, P., Pantosti, A., 2015, Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309-318.

[2].   Das, B., Sarma, M., Kumar, R., Borah, P., Sinha, S., Gupta, P., Durlabhji, P., 2020, Isolation, identification and antibiotic sensitivity pattern of Escherichia coli isolated from various clinical sample in a tertiary care hospital, Jaipur, Rajasthan, India. International Journal of Research in Medical Sciences, 8(5), 1774-1778.

[3].   Kamala, K., Sivaperumal, P., 2023, Predominance of multi-drug resistant extended spectrum β lactamase producing bacteria from marine fishes. Environmental Pollution, 323, 121314.

[4].   Khan, D., Zeb, M., Khattak, S.K., Shah, A.A., Abdullah, M., Bilal, M., 2023, Molecular characterization and antibiotic susceptibility pattern of bacterial strains isolated from diabetic foot ulcers. Endocrine and Metabolic Science, 12, 100136.

[5].   Jabeen, K., Saleem, S., Jahan, S., Nizamudin, S., Arshad, F., Huma, Z.E., Raza, S.M., Mehmood, M., Roman, M., Haq, F.U., 2023, Molecular characterization of extensively drug-resistant Salmonella enterica Serovar Typhi clinical isolates from Lahore, Pakistan. Infection and Drug Resistance, 2987-3001.

[6].   Sivaperumal, P., Kamala, K., Ganapathy, D.M., Dharani, G., Sundarrajan, S., Ramakrishna, S., 2023, Fabrication of AgNPs mediated fibrous membrane from Rhizophora mucronata mangrove plant extract for biological properties. Journal of Drug Delivery Science and Technology, 86, 104710.

[7].   Chaudhary, L., Pandey, A., Singh, P., Chaturvedi, P., Bisht, A.S., 2023, Bacterial Profile and Antimicrobial Susceptibility Pattern of Gram-Negative Bacteria Isolated from Skin and Soft Tissue Infections in a Tertiary Care Hospital of Western Uttar Pradesh, 14(3), 135.

[8].   Vasoo, S., 2017, Susceptibility testing for the polymyxins: two steps back, three steps forward?. Journal of Clinical Microbiology, 55(9), 2573-2582.

[9].   Pauline, C.R., Akshita, Pavithra, T., Kannan, K., Sivaperumal, P., 2024, Characterization and Biological Activity of Silver Nanoparticles from (Rhizophora mucronata) Mangrove Extract. Nano Life, 2450018.

[10].  Clinical and Laboratory Standards Institute, (CLSI), 2019. Performance Standards for antimicrobial Susceptibility Testing; 28th Informational Supplement; CLSI Document m100-S29. Clinical and Laboratory Standards Institute.

[11].  Khalid, S., Migliaccio, A., Zarrilli, R., Khan, A.U., 2023, Efficacy of Novel Combinations of Antibiotics against Multidrug-Resistant—New Delhi Metallo-Beta-Lactamase-Producing Strains of Enterobacterales. Antibiotics, 12(7), 1134.

[12].  Vasaikar, S., Obi, L., Morobe, I., Bisi-Johnson, M., 2017, Molecular characteristics and antibiotic resistance profiles of Klebsiella isolates in Mthatha, Eastern Cape province, South Africa. International Journal of Microbiology, 2017(1), 8486742.

[13].  Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., 2012, Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281.

[14].  Onanuga, A., Mahindroo, J., Singh, S., Taneja, N., 2019, Phenotypic and molecular characterization of antimicrobial resistant Escherichia coli from urinary tract infections in Port-Harcourt, Nigeria. African Medical Journal, 34(1).

[15].  Rosenthal, V.D., Maki, D.G., Jamulitrat, S., Medeiros, E.A., Todi, S.K., Gomez, D.Y., Leblebicioglu, H., Khader, I.A., Novales, M.G.M., Berba, R., Wong, F.M.R., 2010, International nosocomial infection control consortium (INICC) report, data summary for 2003-2008. American Journal of Infection Control, 38(2), 95-104.

[16].  Suma, P., Swetha, C.S., Sudhanthiramani., Goud, S.S., Annie Supriya., Jagadeesh Babu, A., 2016, A study on the antibiotic resistance patterns of Staphylococcus aureus isolated from market milk in and around Tirupati, Andhra Pradesh. International Journal of Recent Scientific Research, 7(4), 10429-10435.

[17].  Gupta, M., Naik, A.K., Singh, S.K., 2019, Bacteriological profile and antimicrobial resistance patterns of burn wound infections in a tertiary care hospital. Heliyon, 5(12). e02956.

[18].  Lagha, R., Abdallah, F.B., ALKhammash, A.A., Amor, N., Hassan, M.M., Mabrouk, I., Alhomrani, M., Gaber, A., 2021, Molecular characterization of multidrug-resistant Klebsiella pneumoniae clinical isolates recovered from King Abdulaziz Specialist Hospital at Taif City, Saudi Arabia Journal of Infection and Public Health, 14(1), 143-151.

[19].  Apenteng, J.A., Yeboah, E.E.A., Kyere-Davies, G., 2022, Antibiotic susceptibility of bacteria isolates from ward environment of a hospital in Tema, Ghana. African Journal of Microbiology Research, 16(6), 211-216.

[20].  Zhang, Y., Li, D., Yang, Y., Su, J., Xu, X., Wang, M., Chen, Y., Li, Y., 2021, Clinical and molecular characteristics of Chryseobacterium indologenes isolates at a teaching hospital in Shanghai, China. Annals of Translational Medicine, 9(8).

[21].  Zarras, C., Karampatakis, T., Pappa, S., Iosifidis, E., Vagdatli, E., Roilides, E., Papa, A., 2023, Genetic characterization of carbapenem-resistant Klebsiella pneumoniae clinical isolates in a tertiary hospital in Greece, 2018–2022. Antibiotics, 12(6), 976.

[22].  Khalid, S., Migliaccio, A., Zarrilli, R., Khan, A.U., 2023, Efficacy of Novel Combinations of Antibiotics against Multidrug-Resistant—New Delhi Metallo-Beta-Lactamase-Producing Strains of Enterobacterales. Antibiotics, 12(7), 1134.

[23].  Shanahan, P.M., Jesudason, M.V., Thomson, C.J., Amyes, S.G., 1998, Molecular analysis of and identification of antibiotic resistance genes in clinical isolates of Salmonella typhi from India. Journal of Clinical Microbiology, 36(6), 1595-1600.