References:
[1]. Mandal, N., Grambergs, R., Mondal, K., Basu, S.K., Tahia, F. and Dagogo-Jack, S., 2021. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. Journal of Diabetes and its Complications, 35(2), p.107734.
[2]. Brownlee, M., 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), pp.1615-1625.
[3]. Pickup, J.C. and Crook, M.A., 1998. Is type II diabetes mellitus a disease of the innate immune system?. Diabetologia, 41, pp.1241-1248.
[4]. Chaurasia, B. and Summers, S.A., 2015. Ceramides–lipotoxic inducers of metabolic disorders. Trends in Endocrinology & Metabolism, 26(10), pp.538-550.
[5]. Al-Said, N.H., Taha, F.M., Abdel-Aziz, G.M. and Abdel-Tawab, M.S., 2018. Fetuin-A level in type 2 diabetic patients: relation to microvascular complications. The Egyptian Journal of Internal Medicine, 30, pp.121-130.
[6]. Sokolowska, E. and Blachnio-Zabielska, A., 2019. The role of ceramides in insulin resistance. Frontiers in Endocrinology, 10, p.436871.
[7]. Galadari, S., Rahman, A., Pallichankandy, S., Galadari, A. and Thayyullathil, F., 2013. Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids in health and disease, 12, pp.1-16.
[8]. Achari, A.E. and Jain, S.K., 2017. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International journal of molecular sciences, 18(6), p.1321.
[9]. Holland, W.L., Adams, A.C., Brozinick, J.T., Bui, H.H., Miyauchi, Y., Kusminski, C.M., Bauer, S.M., Wade, M., Singhal, E., Cheng, C.C. and Volk, K., 2013. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell metabolism, 17(5), pp.790-797.
[10]. ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., Collins, B.S., Cusi, K., Das, S.R., Gibbons, C.H. and Giurini, J.M., 2023. Introduction and methodology: standards of care in diabetes—2023. Diabetes Care, 46(Supplement_1), pp.S1-S4.
[11]. Stern, J.H., Rutkowski, J.M. and Scherer, P.E., 2016. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell metabolism, 23(5), pp.770-784.
[12]. Al-Mhanna, S.B., Batrakoulis, A., Mohamed, M., Alkhamees, N.H., Sheeha, B.B., Ibrahim, Z.M., Aldayel, A., Muhamad, A.S., Rahman, S.A., Afolabi, H.A. and Zulkifli, M.M., 2024. Home-based circuit training improves blood lipid profile, liver function, musculoskeletal fitness, and health-related quality of life in overweight/obese older adult patients with knee osteoarthritis and type 2 diabetes: a randomized controlled trial during the COVID-19 pandemic. BMC Sports Science, Medicine and Rehabilitation, 16(1), p.125.
[13]. Borodzicz, S., Czarzasta, K., Kuch, M. and Cudnoch-Jedrzejewska, A., 2015. Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids in health and disease, 14, pp.1-8.
[14]. Summers, S.A., 2018. Could ceramides become the new cholesterol?. Cell metabolism, 27(2), pp.276-280.
[15]. Goetz, R., 2013. Adiponectin—a mediator of specific metabolic actions of FGF21. Nature Reviews Endocrinology, 9(9), pp.506-508.
[16]. Duncan, B.B., Schmidt, M.I., Pankow, J.S., Bang, H., Couper, D., Ballantyne, C.M., Hoogeveen, R.C. and Heiss, G., 2004. Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes, 53(9), pp.2473-2478.
[17]. Yadalam, P.K., Arumuganainar, D., Ronsivalle, V., Di Blasio, M., Badnjevic, A., Marrapodi, M.M., Cervino, G. and Minervini, G., 2024. Prediction of interactomic hub genes in PBMC cells in type 2 diabetes mellitus, dyslipidemia, and periodontitis. BMC Oral Health, 24(1), p.385.
[18]. Jiang, Y., Owei, I., Wan, J., Ebenibo, S. and Dagogo-Jack, S., 2016. Adiponectin levels predict prediabetes risk: the Pathobiology of Prediabetes in A Biracial Cohort (POP-ABC) study. BMJ Open Diabetes Research and Care, 4(1), p.e000194.
[19]. Hushmandi, K., Einollahi, B., Aow, R., Suhairi, S.B., Klionsky, D.J., Aref, A.R., Reiter, R.J., Makvandi, P., Rabiee, N., Xu, Y. and Nabavi, N., 2024. Investigating the Interplay between Mitophagy and Diabetic Neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacological Research, p.107394.