Exploring the Antimicrobial and Antibiofilm Activities of Luffa cylindrica against Pseudomonas aeruginosa and Enterococcus faecalis
Abstract:
Biofilm-producing Pseudomonas aeruginosa (P.
aeruginosa) and Enterococcus faecalis (E. faecalis) pose a significant risk to
patients due to their enhanced resistance to antibiotics and the immune
response. Studies show that preventing the generation of virulence factors and
the formation of biofilms can mitigate the pathogenesis of P. aeruginosa and E.
faecalis. The natural medicinal plant extract of Luffa cylindrica (L.
cylindrica) has the potential to inhibit the quorum sensing (QS) system in both
PAO1 and E. faecalis at low concentrations. The study, conducted over one year
from April 2023 to April 2024, involved a series of in-vitro investigations
designed to evaluate the antimicrobial and antibiofilm activities of L.
cylindrica extract. These investigations included determining the antimicrobial
analysis, antibiotic susceptibility testing, Minimum Inhibitory Concentration
(MIC), performing crystal violet biofilm inhibition assays, evaluating
bacterial growth curves, and quantifying extracellular polymeric substances
(EPS) at specific concentrations. The results demonstrated that the ethanol
extract from L. cylindrica inhibited the proliferation of PAO1 at 10 mg/mL and
E. faecalis at 2.5 mg/mL. Subsequent antibiofilm studies revealed that L.
cylindrica extract inhibited biofilm formation in PAO1 at 2.5 mg/mL and in E.
faecalis at 0.625 mg/mL. Additionally, the L. cylindrica extract significantly
reduced the production of EPS in both organisms. These findings highlight the
potential of L. cylindrica as an antipathogenic compound capable of preventing
QS-dependent pathogenicity in PAO1 and E. faecalis.
References:
[1]. Mancuso, G., Midiri, A., Gerace, E., Biondo, C., 2021, Bacterial Antibiotic Resistance: The Most Critical Pathogens, Pathogens, 10(10), 1310. doi:10.3390/pathogens10101310
[2]. WHO, 2018, 10 Threats to Global Health in 2018.
[3]. Breijyeh, Z., Jubeh, B., Karaman, R., 2020, Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It, Molecules, 25(6), 1340. doi:10.3390/molecules25061340
[4]. Hancock, R. E. W., Speert, D. P., 2000, Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment, Drug Resistance Updates, 3(4), 247-255. doi:10.1054/drup.2000.0152
[5]. Miller, W. R., Munita, J. M., Arias, C. A., 2014, Mechanisms of antibiotic resistance in enterococci, Expert Rev Anti Infect Ther, 12(10), 1221-1236. doi:10.1586/14787210.2014.956092
[6]. Bjarnsholt, T., Givskov, M., 2007, Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens, Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1483), 1213-1222. doi:10.1098/rstb.2007.2046
[7]. Adonizio, A., Kong, K. F., Mathee, K., 2008, Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa by South Florida Plant Extracts, Antimicrob Agents Chemother, 52(1), 198-203. doi:10.1128/AAC.00612-07
[8]. De Kievit, T. R., 2009, Quorum sensing in Pseudomonas aeruginosa biofilms, Environ Microbiol, 11(2), 279-288. doi:10.1111/j.1462-2920.2008.01792.x
[9]. Lee, J., Zhang, L., 2015, The hierarchy quorum sensing network in Pseudomonas aeruginosa, Protein Cell, 6(1), 26-41. doi:10.1007/s13238-014-0100-x
[10]. Pesci, E. C., Pearson, J. P., Seed, P. C., Iglewski, B. H., 1997, Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa, J Bacteriol, 179(10), 3127-3132. doi:10.1128/jb.179.10.3127-3132.1997
[11]. Mukherjee, S., Moustafa, D., Smith, C. D., Goldberg, J. B., Bassler, B. L., 2017, The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer, PLoS Pathog, 13(7), e1006504. doi:10.1371/journal.ppat.1006504
[12]. Jett, B. D., Huycke, M. M., Gilmore, M. S., 1994, Virulence of enterococci, Clin Microbiol Rev, 7(4), 462-478. doi:10.1128/CMR.7.4.462
[13]. Alghamdi, F., Shakir, M., 2020, The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review, Cureus. Published online March 13. doi:10.7759/cureus.7257
[14]. Wong, J., Manoil, D., Näsman, P., Belibasakis, G. N., Neelakantan, P., 2021, Microbiological Aspects of Root Canal Infections and Disinfection Strategies: An Update Review on the Current Knowledge and Challenges, Frontiers in Oral Health, 2. doi:10.3389/froh.2021.672887
[15]. Kreft, B., Marre, R., Schramm, U., Wirth, R., 1992, Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells, Infect Immun, 60(1), 25-30. doi:10.1128/iai.60.1.25-30.1992
[16]. Otto, M., 2008, Targeted Immunotherapy for Staphylococcal Infections, BioDrugs, 22(1), 27-36. doi:10.2165/00063030-200822010-00003
[17]. Franz, C. M. A. P., Huch, M., Abriouel, H., Holzapfel, W., Gálvez, A., 2011, Enterococci as probiotics and their implications in food safety, Int J Food Microbiol, 151(2), 125-140. doi:10.1016/j.ijfoodmicro.2011.08.014
[18]. Qin, X., Singh, K. V., Weinstock, G. M., Murray, B. E., 2000, Effects of Enterococcus faecalis fsr Genes on Production of Gelatinase and a Serine Protease and Virulence, Infect Immun, 68(5), 2579-2586. doi:10.1128/IAI.68.5.2579-2586.2000
[19]. Chimi, L. Y., Bisso, B. N., Njateng, G. S. S., Dzoyem, J. P., 2023, Antibiotic-Potentiating Effect of Some Bioactive Natural Products against Planktonic Cells, Biofilms, and Virulence Factors of Pseudomonas aeruginosa, Biomed Res Int, 2023, 1-10. doi:10.1155/2023/9410609
[20]. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., Supuran, C. T., 2021, Natural products in drug discovery: advances and opportunities, Nat Rev Drug Discov, 20(3), 200-216. doi:10.1038/s41573-020-00114-z
[21]. Akinwumi, A. A., Eleyowo, O. O., Oladipo, O. O., 2022, A Review on the Ethnobotanical Uses, Phytochemistry and Pharmacological Effect of Luffa cylindrinca, In: Natural Drugs from Plants, IntechOpen. doi:10.5772/intechopen.98405
[22]. Partap, S., Kant Sharma, N., 2012, Luffa Cylindrica: An Important Medicinal Plant. www.scholarsresearchlibrary.com
[23]. Cao, T. Q., Kim, J. A., Woo, M. H., Min, B. S., 2021, SARS-CoV-2 main protease inhibition by compounds isolated from Luffa cylindrica using molecular docking, Bioorg Med Chem Lett, 40, 127972. doi:10.1016/j.bmcl.2021.127972
[24]. Baltimore: Williams & Wilkins, 1993, Bacteria -- Classification, Bacteriology -- Terminology, inlibrary; printdisabled; internetarchivebooks.
[25]. Clinical and Laboratory Standards Institute, Weinstein, M. P., Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically.
[26]. Ganesh, P. S., Veena, K., Senthil, R., et al., 2022, Biofilm-Associated Agr and Sar Quorum Sensing Systems of Staphylococcus aureus Are Inhibited by 3-Hydroxybenzoic Acid Derived from Illicium verum, ACS Omega, 7(17), 14653-14665. doi:10.1021/acsomega.1c07178
[27]. Venkatramanan, M., Sankar Ganesh, P., Senthil, R., et al., 2020, Inhibition of Quorum Sensing and Biofilm Formation in Chromobacterium violaceum by Fruit Extracts of Passiflora edulis, ACS Omega, 5(40), 25605-25616. doi:10.1021/acsomega.0c02483
[28]. CLSI, 2022, Performance standards for antimicrobial susceptibility testing, M100 32nd Edition, Clinical and Laboratory Standards Institute, Wayne, PA.
[29]. Marcoux, E., Lagha, A. Ben, Gauthier, P., Grenier, D., 2020, Antimicrobial activities of natural plant compounds against endodontic pathogens and biocompatibility with human gingival fibroblasts, Arch Oral Biol, 116, 104734. doi:10.1016/j.archoralbio.2020.104734
[30]. Vambe, M., Naidoo, D., Aremu, A. O., Finnie, J. F., Van Staden, J., 2021, Bioassay-guided purification, GC-MS characterization and quantification of phyto-components in an antibacterial extract of Searsia lancea leaves, Nat Prod Res, 35(22), 4658-4662. doi:10.1080/14786419.2019.1700251
[31]. Nwanekwu, K. E., 2020, Evaluation of Medicinal Plants Extract against Biofilm Formation in Pseudomonas aeruginosa, J Adv Microbiol. Published online June 22, 62-66. doi:10.9734/jamb/2020/v20i530246
[32]. Bernardo, B., John Christian, V. A., 2017, Detection of anti-biofilm activities of Imperata cylindrica L. (Kogon) leaf extract on Escherichia coli, Staphylococcus aureus, and Vibrio cholerae.
[33]. Zhou, J. W., Luo, H. Z., Jiang, H., Jian, T. K., Chen, Z. Q., Jia, A. Q., 2018, Hordenine: A Novel Quorum Sensing Inhibitor and Antibiofilm Agent against Pseudomonas aeruginosa, J Agric Food Chem, 66(7), 1620-1628. doi:10.1021/acs.jafc.7b05035
[34]. Majik, M. S., Naik, D., Bhat, C., Tilve, S., Tilvi, S., D’Souza, L., 2013, Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa, Bioorg Med Chem Lett, 23(8), 2353-2356. doi:10.1016/j.bmcl.2013.02.051
[35]. Niaz, F., Faheem, M., Khattak, M., et al., 2022, Antibacterial and Antibiofilm Activity of Juglone Derivatives against Enterococcus faecalis: An In Silico and In Vitro Approach, Biomed Res Int, 1-11. doi:10.1155/2022/6197375
[36]. Dhanalakshmi UnniKrishnan Nair, M. S., N. K., N. R. P., 2010, Phytochemical and Antimicrobial Evaluation of Luffa cylindrica Linn. Leaf and Flower Extracts – An In-Vitro Study. Research J of Pharmacy and Technology, 3 (2), 438–441.