Green Synthesis of Selenium Nanoparticles using Cinnamomum Verum Extract and their Antibacterial, Antioxidant, and Brine Shrimp Toxicity Effects
Abstract:
Nanotechnology holds the potential
to transform biomedicine through the development of nanomaterials that are
compatible with biological systems. The application of selenium nanoparticles
(SeNPs) synthesized by Cinnamomum verum aqueous extract, is aimed at offering
environmentally friendly agents for the biomedical sector, with antibacterial, and
antioxidant properties. Exploiting the ability of C. verum extract to reduce
Sodium Selenite (Na2SeO3) to SeNPs. The synthesized
SeNPs analyzed the antibacterial features of microbial pathogens such as gram-positive
and gram-negative using standard microbiological methods. Using different
characterization techniques like UV-visible spectroscopy and Fourier-Transform
Infrared (FTIR), the analysis shows the synthesis of SeNPs succession and
clarifies the material’s composition. Scanning Electron Microscopy (SEM) in
conjunction with Energy Dispersive X-ray spectroscopy (EDAX) analysis further provides
detailed information about SeNP's structural morphology and elemental
composition. Furthermore, their antioxidant capabilities are examined, which
were evaluated in the range of 30–60 μg/mL for their ability to scavenge free
radicals as 80–90% using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) assay and
100–500 μg/mL concentrations used for the Ferric-Reducing Antioxidant Powder
(FRAP) assay. As the concentration of SeNPs increased, their ability to
scavenge DPPH and FRAP radicals also increased in a dose-dependent manner. Importantly,
SeNPs displayed lower toxicity in brine shrimp assays at lower concentrations,
indicating their potential safety for use in biomedical contexts. At the end of
this synthesis, C. verum-mediated SeNPs are presented as a promising option
beneficial in nanotechnology development applied in medicine and especially
treatment of a bacterial infection which can even extend to cancer.
References:
[1].
Khudier,
M. A, Hammadi, H. A, Atyia, H. T, Al-Karagoly, H, Albukhaty, S, Sulaiman, G. M,
Dewir, Y. H, Mahood, H. B. 2023. Antibacterial Activity of Green Synthesized
Selenium Nanoparticles using Vaccinium Arctostaphylos (L.) Fruit Extract. Cogent
Food & Agriculture, 9:2245612. https://doi.org/10.1080/23311932.2023.2245612
[2].
Vahidi,
H, Barabadi, H, Saravanan, M, 2020, Emerging Selenium Nanoparticles to Combat
Cancer: A Systematic Review. Journal of Cluster Science, 31:301-9. https://doi.org/10.1007/s10876-019-01671-z
[3].
Muhammad,
D. R, Dewettinck, K, 2017, Cinnamon and its Derivatives As Potential Ingredient
in Functional Food—A Review. International Journal of Food Properties,
20:2237-63. https://doi.org/10.1080/10942912.2017.1369102
[4].
Nabavi,
S. F, Di Lorenzo, A, Izadi, M, Sobarzo-Sánchez, E, Daglia, M, Nabavi, S. M.,
2015. Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and
Pharmaceutical Industries. Nutrients. 79:7729-48. https://doi.org/10.3390/nu7095359
[5].
Manojkumar,
U., Kaliannan, D., Srinivasan, V., Balasubramanian, B., Kamyab, H., Mussa, Z. H.,
Palaniyappan, J., Mesbah, M., Chelliapan, S. and Palaninaicker, S., 2023. Green
Synthesis of Zinc Oxide Nanoparticles Using Brassica Oleracea Var. Botrytis
Leaf Extract: Photocatalytic, Antimicrobial and Larvicidal Activity. Chemosphere.
323:138263. https://doi.org/10.1016/j.chemosphere.2023.138263
[6].
Alghuthaymi,
M. A., Diab, A. M., Elzahy, A. F., Mazrou, K. E., Tayel, A. A. and Moussa, S. H.,
2021. Research Article Green Biosynthesized Selenium Nanoparticles by Cinnamon
Extract and Their Antimicrobial Activity and Application as Edible Coatings
with Nano-Chitosan. Journal of Food Quality, 2021:1-0. https://doi.org/10.1155/2021/6670709
[7].
Ansari,
M. A., Murali, M., Prasad, D., Alzohairy, M. A., Almatroudi, A., Alomary, M. N.,
Udayashankar, A. C., Singh, S. B., Asiri, S. M. M., Ashwini, B. S. and Gowtham,
H. G., 2020. Cinnamomum verum Bark Extract Mediated Green Synthesis of
ZnO Nanoparticles and their Antibacterial Potentiality. Biomolecules.
10:336. https://doi.org/10.3390/biom10020336
[8].
Długosz,
O., Ochnik, M., Sochocka, M., Franz, D., Orzechowska, B., Anna, C. K., Agata,
D. and Banach, M., 2022. Antimicrobial and Antiviral Activity Of Selenium
Sulphide Nanoparticles Synthesised in extracts from Spices in Natural Deep
Eutectic Solvents (NDES). Sustainable Materials and Technologies,
32:00433. https://doi.org/10.1016/j.susmat.2022.e00433
[9].
Abd-Elraoof,
W. A., Tayel, A. A., Shaymaa, W., Abukhatwah, O. M. W., Diab, A. M., Abonama,
O. M., Assas, M. A. and Abdella, A., 2023. Characterization and Antimicrobial
Activity Of A Chitosan-Selenium Nanocomposite Biosynthesized Using Posidonia
Oceanica. RSC Advances, 13:26001-14. https://doi.org/10.1039/D3RA04288J
[10].
Chellapa,
L. R., Shanmugam, R., Indiran, M. A. and Samuel, S. R., 2020. Biogenic Nanoselenium
Synthesis, Its Antimicrobial, Antioxidant Activity And Toxicity. Bioinspired
Biomimetic and Nanobiomaterials. 9:184-9. https://doi.org/10.1680/jbibn.19.00054
[11].
Hassan,
A., Yousif, M. H., Abd-Elkhaliq, H. M. M., Wahba, A. K. A. and El-Hamaky, A. M.
A., 2021. The Antimicrobial Potential Of Selenium Nanoparticles Singly And In
Combination with Cinnamon Oil Against Fungal And Bacterial Causes of Diarrhea
in Buffaloes. Advances in Animal and Veterinary Sciences, 9:1238-1248. http://dx.doi.org/10.17582/journal.aavs/2021/9.8.1238.1248
[12].
Hamza,
F., Vaidya, A., Apte, M., Kumar, A.R. and Zinjarde, S., 2017. Selenium Nanoparticle-Enriched
Biomass of Yarrowia lipolytica Enhances Growth and Survival of Artemia Salina. Enzyme
and Microbial Technology, 106:48-54. https://doi.org/10.1016/j.enzmictec.2017.07.002
[13].
Francis,
T., Rajeshkumar, S., Roy, A. and Lakshmi, T., 2020. Anti-Inflammatory And
Cytotoxic Effect of Arrow Root Mediated Selenium Nanoparticles. Pharmacognosy
Journal, 12:1363-1367. http://dx.doi.org/10.5530/pj.2020.12.188
[14].
Najafi,
S., Razavi, S. M., Khoshkam, M. and Asadi, A., 2020. Effects of Green Synthesis
of Sulfur Nanoparticles from Cinnamomum Zeylanicum Barks on Physiological and
Biochemical Factors of Lettuce (Lactuca sativa). Physiological and Molecular
Plant Pathology, 26:1055-66. https://doi.org/10.1007/s12298-020-00793-3
[15].
Behera,
A., Jothinathan, M. K. D., Ryntathiang, I., Saravanan, S. and Murugan, R.,
2024. Comparative Antioxidant Efficacy of Green-Synthesised Selenium
Nanoparticles from Pongamia pinnata, Citrus sinensis, and Acacia
auriculiformis: An In Vitro Analysis. Cureus. 16: e58439. https://doi.org/10.7759%2Fcureus.58439
[16].
Harris,
J, Malaiappan, S, Rajeshkumar, S, 2023, The Development and Evaluation of
Melatonin-Loaded, Calcium Oxide Nanoparticle-Based Neem and Clove Extract: An In
Vitro Study. Cureus. 15: e46293. https://doi.org/10.7759%2Fcureus.46293
[17].
Behera,
A., Jothinathan, M. K. D., Saravanan, S., Selvan, S. T., Renuka, R. R. and
Srinivasan, G. P., 2024. Green Synthesis of Selenium Nanoparticles from Clove
and their Toxicity Effect and Anti-Angiogenic, Antibacterial And Antioxidant
Potential. Cureus. 16: e55605. https://doi.org/10.7759%2Fcureus.55605
[18].
Gajbhiye,
N. I, Koyande, A. R, 2022, Antimicrobial Activity And Phytochemical Screening
Of Methanolic Extract Of Cinnamomum Zeylanicum (Commercial Species). Asian
Journal of Microbiology, Biotechnology & Environmental Sciences,
23:198-203. http://doi.org/10.53550/AJMBES.2022.v24i01.031
[19].
Sivapriya,
T, John, S, 2020, Qualitative, Quantitative, And Antioxidant Analysis of
Phytochemicals Present in Cinnamomum Zeylanicum Species. Indian Journal of
Health Sciences and Biomedical Research KLEU. 13:105-11. Doi:
10.4103/kleuhsj.kleuhsj_8_20
[20].
Vijayaraj,
R, Sri Kumaran, N, Altaff, K, 2022, Toxicity Evaluation of Novel Antidiabetic
Compound (11-methoxy-2- methyltridecane-4-ol) from Marine Macro Alga,
Gracilaria edulis. Journal of Biologically Active Products from Nature,
12:223-31. https://doi.org/10.1080/22311866.2022.2069153
[21].
Granja
Alvear, A, Pineda-Aguilar, N, Lozano, P, Lárez-Velázquez, C, Suppan, G, Galeas,
S, Debut, A, Vizuete, K, De Lima, L, Saucedo-Vázquez, J. P, Alexis, F., 2024.
Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing
Agent from Cinnamon Bark Extract. Bioengineering, 11:517. https://doi.org/10.3390/bioengineering11050517
[22].
Idris
FZ, Habibu UA., 2021. In-vitro Antibacterial Activity Of Cinnamon Bark Extracts
On Clinical Multi-Drug Resistant (mdr) Staphylococcus Aureus, Klebsiella Pneumoniae
And Pseudomonas Aeruginosa Isolates. Bayero Journal of Pure and Applied
Sciences, 14:38-44. https://doi.org/10.4314/bajopas.v14i1.6
[23].
Sentkowska,
A, Pyrzyńska, K., 2022. The Influence Of Synthesis Conditions On The
Antioxidant Activity Of Selenium Nanoparticles. Molecules, 27:2486. https://doi.org/10.3390/molecules27082486
[24].
Cittrarasu,
V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W. C.,
Balasubramanian, B. and Arumugam, M., 2021. Green Synthesis Of Selenium
Nanoparticles Mediated from Ceropegia Bulbosa Roxb Extract And Its
Cytotoxicity, Antimicrobial, Mosquitocidal and Photocatalytic Activities. Scientific
Reports, 11:1032. https://doi.org/10.1038/s41598-020-80327-9
[25].
Pérez
Gutiérrez, R. M., Soto Contreras, J. G., Martínez Jerónimo, F. F., de la Luz
Corea Téllez, M. and Borja-Urby, R., 2022. Assessing the Ameliorative Effect Of
Selenium Cinnamomum Verum, Origanum Majorana, And Origanum Vulgare
Nanoparticles In Diabetic Zebrafish (Danio rerio). Plants. 11:893. https://doi.org/10.3390/plants11070893
[26].
Hernández-Díaz,
J. A, Garza-García, J. J, León-Morales, J. M, Zamudio-Ojeda, A, Arratia-Quijada,
J, Velázquez-Juárez, G, López-Velázquez, J. C, García-Morales, S., 2021.
Antibacterial Activity Of Biosynthesized Selenium Nanoparticles Using Extracts
Of Calendula Officinalis Against Potentially Clinical Bacterial Strains. Molecules,
26:5929. https://doi.org/10.3390/molecules26195929
[27].
Ahmed,
H. M., Ramadhani, A. M., Erwa, I. Y., Ishag, O. A. O. and Saeed, M. B., 2020.
Phytochemical Screening, Chemical Composition And Antimicrobial Activity of
Cinnamon Verum Bark. International Research Journal of Pure and Applied
Chemistry, 21:36-43. Doi: 10.9734/IRJPAC/2020/v21i1130222
[28].
Goyal,
D., Saini, A., Saini, G. S. S. and Kumar, R., 2019. Green Synthesis of
Anisotropic Gold Nanoparticles Using Cinnamon With Superior Antibacterial
Activity. Materials Research Express, 6:075043. DOI
10.1088/2053-1591/ab15a6
[29].
Parisa,
N., Islami, R. N., Amalia, E., Mariana, M. and Rasyid, R. S. P., 2019.
Antibacterial Activity of Cinnamon Extract (Cinnamomum Burmannii) Against
Staphylococcus Aureus and Escherichia Coli In Vitro. Bioscientia
Medicina: Journal of Biomedicine and Translational Research, 3:19-28. https://doi.org/10.32539/bsm.v3i2.85
[30].
Jha,
N., Esakkiraj, P., Annamalai, A., Lakra, A. K., Naik, S. and Arul, V., 2022.
Synthesis, Optimization, And Physicochemical Characterization Of Selenium
Nanoparticles From Polysaccharide of Mangrove Rhizophora Mucronata With
Potential Bioactivities. Journal of Trace Elements and Minerals,
2:100019. https://doi.org/10.1016/j.jtemin.2022.100019
[31].
Chen, W, Cheng, H, Xia, W., 2022. Construction of
Polygonatum sibiricum Polysaccharide Functionalized Selenium Nanoparticles for
the Enhancement of Stability and Antioxidant Activity. Antioxidants, 11:240. https://doi.org/10.3390/antiox11020240