Green Synthesis of Selenium Nanoparticles using Cinnamomum Verum Extract and their Antibacterial, Antioxidant, and Brine Shrimp Toxicity Effects

Download Article

DOI: 10.21522/TIJPH.2013.12.03.Art039

Authors : Mukesh Kumar Dharmalingam Jothinathan, Archana Behera, Yamuna devi M. S, Iadalin Ryntathiang

Abstract:

Nanotechnology holds the potential to transform biomedicine through the development of nanomaterials that are compatible with biological systems. The application of selenium nanoparticles (SeNPs) synthesized by Cinnamomum verum aqueous extract, is aimed at offering environmentally friendly agents for the biomedical sector, with antibacterial, and antioxidant properties. Exploiting the ability of C. verum extract to reduce Sodium Selenite (Na2SeO3) to SeNPs. The synthesized SeNPs analyzed the antibacterial features of microbial pathogens such as gram-positive and gram-negative using standard microbiological methods. Using different characterization techniques like UV-visible spectroscopy and Fourier-Transform Infrared (FTIR), the analysis shows the synthesis of SeNPs succession and clarifies the material’s composition. Scanning Electron Microscopy (SEM) in conjunction with Energy Dispersive X-ray spectroscopy (EDAX) analysis further provides detailed information about SeNP's structural morphology and elemental composition. Furthermore, their antioxidant capabilities are examined, which were evaluated in the range of 30–60 μg/mL for their ability to scavenge free radicals as 80–90% using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) assay and 100–500 μg/mL concentrations used for the Ferric-Reducing Antioxidant Powder (FRAP) assay. As the concentration of SeNPs increased, their ability to scavenge DPPH and FRAP radicals also increased in a dose-dependent manner. Importantly, SeNPs displayed lower toxicity in brine shrimp assays at lower concentrations, indicating their potential safety for use in biomedical contexts. At the end of this synthesis, C. verum-mediated SeNPs are presented as a promising option beneficial in nanotechnology development applied in medicine and especially treatment of a bacterial infection which can even extend to cancer.


References:

[1].   Khudier, M. A, Hammadi, H. A, Atyia, H. T, Al-Karagoly, H, Albukhaty, S, Sulaiman, G. M, Dewir, Y. H, Mahood, H. B. 2023. Antibacterial Activity of Green Synthesized Selenium Nanoparticles using Vaccinium Arctostaphylos (L.) Fruit Extract. Cogent Food & Agriculture, 9:2245612. https://doi.org/10.1080/23311932.2023.2245612

[2].   Vahidi, H, Barabadi, H, Saravanan, M, 2020, Emerging Selenium Nanoparticles to Combat Cancer: A Systematic Review. Journal of Cluster Science, 31:301-9. https://doi.org/10.1007/s10876-019-01671-z

[3].   Muhammad, D. R, Dewettinck, K, 2017, Cinnamon and its Derivatives As Potential Ingredient in Functional Food—A Review. International Journal of Food Properties, 20:2237-63. https://doi.org/10.1080/10942912.2017.1369102

[4].   Nabavi, S. F, Di Lorenzo, A, Izadi, M, Sobarzo-Sánchez, E, Daglia, M, Nabavi, S. M., 2015. Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients. 79:7729-48. https://doi.org/10.3390/nu7095359

[5].   Manojkumar, U., Kaliannan, D., Srinivasan, V., Balasubramanian, B., Kamyab, H., Mussa, Z. H., Palaniyappan, J., Mesbah, M., Chelliapan, S. and Palaninaicker, S., 2023. Green Synthesis of Zinc Oxide Nanoparticles Using Brassica Oleracea Var. Botrytis Leaf Extract: Photocatalytic, Antimicrobial and Larvicidal Activity. Chemosphere. 323:138263. https://doi.org/10.1016/j.chemosphere.2023.138263

[6].   Alghuthaymi, M. A., Diab, A. M., Elzahy, A. F., Mazrou, K. E., Tayel, A. A. and Moussa, S. H., 2021. Research Article Green Biosynthesized Selenium Nanoparticles by Cinnamon Extract and Their Antimicrobial Activity and Application as Edible Coatings with Nano-Chitosan. Journal of Food Quality, 2021:1-0. https://doi.org/10.1155/2021/6670709

[7].   Ansari, M. A., Murali, M., Prasad, D., Alzohairy, M. A., Almatroudi, A., Alomary, M. N., Udayashankar, A. C., Singh, S. B., Asiri, S. M. M., Ashwini, B. S. and Gowtham, H. G., 2020. Cinnamomum verum Bark Extract Mediated Green Synthesis of ZnO Nanoparticles and their Antibacterial Potentiality. Biomolecules. 10:336. https://doi.org/10.3390/biom10020336

[8].   Długosz, O., Ochnik, M., Sochocka, M., Franz, D., Orzechowska, B., Anna, C. K., Agata, D. and Banach, M., 2022. Antimicrobial and Antiviral Activity Of Selenium Sulphide Nanoparticles Synthesised in extracts from Spices in Natural Deep Eutectic Solvents (NDES). Sustainable Materials and Technologies, 32:00433. https://doi.org/10.1016/j.susmat.2022.e00433

[9].   Abd-Elraoof, W. A., Tayel, A. A., Shaymaa, W., Abukhatwah, O. M. W., Diab, A. M., Abonama, O. M., Assas, M. A. and Abdella, A., 2023. Characterization and Antimicrobial Activity Of A Chitosan-Selenium Nanocomposite Biosynthesized Using Posidonia Oceanica. RSC Advances, 13:26001-14. https://doi.org/10.1039/D3RA04288J

[10].  Chellapa, L. R., Shanmugam, R., Indiran, M. A. and Samuel, S. R., 2020. Biogenic Nanoselenium Synthesis, Its Antimicrobial, Antioxidant Activity And Toxicity. Bioinspired Biomimetic and Nanobiomaterials. 9:184-9. https://doi.org/10.1680/jbibn.19.00054

[11].  Hassan, A., Yousif, M. H., Abd-Elkhaliq, H. M. M., Wahba, A. K. A. and El-Hamaky, A. M. A., 2021. The Antimicrobial Potential Of Selenium Nanoparticles Singly And In Combination with Cinnamon Oil Against Fungal And Bacterial Causes of Diarrhea in Buffaloes. Advances in Animal and Veterinary Sciences, 9:1238-1248. http://dx.doi.org/10.17582/journal.aavs/2021/9.8.1238.1248

[12].  Hamza, F., Vaidya, A., Apte, M., Kumar, A.R. and Zinjarde, S., 2017. Selenium Nanoparticle-Enriched Biomass of Yarrowia lipolytica Enhances Growth and Survival of Artemia Salina. Enzyme and Microbial Technology, 106:48-54. https://doi.org/10.1016/j.enzmictec.2017.07.002

[13].  Francis, T., Rajeshkumar, S., Roy, A. and Lakshmi, T., 2020. Anti-Inflammatory And Cytotoxic Effect of Arrow Root Mediated Selenium Nanoparticles. Pharmacognosy Journal, 12:1363-1367. http://dx.doi.org/10.5530/pj.2020.12.188

[14].  Najafi, S., Razavi, S. M., Khoshkam, M. and Asadi, A., 2020. Effects of Green Synthesis of Sulfur Nanoparticles from Cinnamomum Zeylanicum Barks on Physiological and Biochemical Factors of Lettuce (Lactuca sativa). Physiological and Molecular Plant Pathology, 26:1055-66. https://doi.org/10.1007/s12298-020-00793-3

[15].  Behera, A., Jothinathan, M. K. D., Ryntathiang, I., Saravanan, S. and Murugan, R., 2024. Comparative Antioxidant Efficacy of Green-Synthesised Selenium Nanoparticles from Pongamia pinnata, Citrus sinensis, and Acacia auriculiformis: An In Vitro Analysis. Cureus. 16: e58439. https://doi.org/10.7759%2Fcureus.58439

[16].  Harris, J, Malaiappan, S, Rajeshkumar, S, 2023, The Development and Evaluation of Melatonin-Loaded, Calcium Oxide Nanoparticle-Based Neem and Clove Extract: An In Vitro Study. Cureus. 15: e46293. https://doi.org/10.7759%2Fcureus.46293

[17].  Behera, A., Jothinathan, M. K. D., Saravanan, S., Selvan, S. T., Renuka, R. R. and Srinivasan, G. P., 2024. Green Synthesis of Selenium Nanoparticles from Clove and their Toxicity Effect and Anti-Angiogenic, Antibacterial And Antioxidant Potential. Cureus. 16: e55605. https://doi.org/10.7759%2Fcureus.55605

[18].  Gajbhiye, N. I, Koyande, A. R, 2022, Antimicrobial Activity And Phytochemical Screening Of Methanolic Extract Of Cinnamomum Zeylanicum (Commercial Species). Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 23:198-203. http://doi.org/10.53550/AJMBES.2022.v24i01.031

[19].  Sivapriya, T, John, S, 2020, Qualitative, Quantitative, And Antioxidant Analysis of Phytochemicals Present in Cinnamomum Zeylanicum Species. Indian Journal of Health Sciences and Biomedical Research KLEU. 13:105-11. Doi: 10.4103/kleuhsj.kleuhsj_8_20

[20].  Vijayaraj, R, Sri Kumaran, N, Altaff, K, 2022, Toxicity Evaluation of Novel Antidiabetic Compound (11-methoxy-2- methyltridecane-4-ol) from Marine Macro Alga, Gracilaria edulis. Journal of Biologically Active Products from Nature, 12:223-31. https://doi.org/10.1080/22311866.2022.2069153

[21].  Granja Alvear, A, Pineda-Aguilar, N, Lozano, P, Lárez-Velázquez, C, Suppan, G, Galeas, S, Debut, A, Vizuete, K, De Lima, L, Saucedo-Vázquez, J. P, Alexis, F., 2024. Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract. Bioengineering, 11:517. https://doi.org/10.3390/bioengineering11050517

[22].  Idris FZ, Habibu UA., 2021. In-vitro Antibacterial Activity Of Cinnamon Bark Extracts On Clinical Multi-Drug Resistant (mdr) Staphylococcus Aureus, Klebsiella Pneumoniae And Pseudomonas Aeruginosa Isolates. Bayero Journal of Pure and Applied Sciences, 14:38-44. https://doi.org/10.4314/bajopas.v14i1.6

[23].  Sentkowska, A, Pyrzyńska, K., 2022. The Influence Of Synthesis Conditions On The Antioxidant Activity Of Selenium Nanoparticles. Molecules, 27:2486. https://doi.org/10.3390/molecules27082486

[24].  Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W. C., Balasubramanian, B. and Arumugam, M., 2021. Green Synthesis Of Selenium Nanoparticles Mediated from Ceropegia Bulbosa Roxb Extract And Its Cytotoxicity, Antimicrobial, Mosquitocidal and Photocatalytic Activities. Scientific Reports, 11:1032. https://doi.org/10.1038/s41598-020-80327-9

[25].  Pérez Gutiérrez, R. M., Soto Contreras, J. G., Martínez Jerónimo, F. F., de la Luz Corea Téllez, M. and Borja-Urby, R., 2022. Assessing the Ameliorative Effect Of Selenium Cinnamomum Verum, Origanum Majorana, And Origanum Vulgare Nanoparticles In Diabetic Zebrafish (Danio rerio). Plants. 11:893. https://doi.org/10.3390/plants11070893

[26].  Hernández-Díaz, J. A, Garza-García, J. J, León-Morales, J. M, Zamudio-Ojeda, A, Arratia-Quijada, J, Velázquez-Juárez, G, López-Velázquez, J. C, García-Morales, S., 2021. Antibacterial Activity Of Biosynthesized Selenium Nanoparticles Using Extracts Of Calendula Officinalis Against Potentially Clinical Bacterial Strains. Molecules, 26:5929. https://doi.org/10.3390/molecules26195929

[27].  Ahmed, H. M., Ramadhani, A. M., Erwa, I. Y., Ishag, O. A. O. and Saeed, M. B., 2020. Phytochemical Screening, Chemical Composition And Antimicrobial Activity of Cinnamon Verum Bark. International Research Journal of Pure and Applied Chemistry, 21:36-43. Doi: 10.9734/IRJPAC/2020/v21i1130222

[28].  Goyal, D., Saini, A., Saini, G. S. S. and Kumar, R., 2019. Green Synthesis of Anisotropic Gold Nanoparticles Using Cinnamon With Superior Antibacterial Activity. Materials Research Express, 6:075043. DOI 10.1088/2053-1591/ab15a6

[29].  Parisa, N., Islami, R. N., Amalia, E., Mariana, M. and Rasyid, R. S. P., 2019. Antibacterial Activity of Cinnamon Extract (Cinnamomum Burmannii) Against Staphylococcus Aureus and Escherichia Coli In Vitro. Bioscientia Medicina: Journal of Biomedicine and Translational Research, 3:19-28. https://doi.org/10.32539/bsm.v3i2.85

[30].  Jha, N., Esakkiraj, P., Annamalai, A., Lakra, A. K., Naik, S. and Arul, V., 2022. Synthesis, Optimization, And Physicochemical Characterization Of Selenium Nanoparticles From Polysaccharide of Mangrove Rhizophora Mucronata With Potential Bioactivities. Journal of Trace Elements and Minerals, 2:100019. https://doi.org/10.1016/j.jtemin.2022.100019

[31].  Chen, W, Cheng, H, Xia, W., 2022. Construction of Polygonatum sibiricum Polysaccharide Functionalized Selenium Nanoparticles for the Enhancement of Stability and Antioxidant Activity. Antioxidants, 11:240. https://doi.org/10.3390/antiox11020240