Antiviral Activities of Polysaccharides from Medicinal Herbs

Download Article

DOI: 10.21522/TIJPH.2013.12.03.Art037

Authors : Malairaj Sathuvan, Deena Sangeetha Chandran

Abstract:

For thousands of years, medicinal herbs have been a cornerstone of clinical practice, offering a wealth of health benefits. Among these benefits, the antiviral properties of polysaccharides found in these herbs are now gaining recognition. This review provides an in-depth exploration of the antiviral effects of these polysaccharides on viruses affecting humans. It delves into how these polysaccharides inhibit various stages of the viral life cycle, effectively preventing viral infection. Furthermore, the review discusses additional mechanisms through which these polysaccharides exert antiviral effects, such as bolstering immune responses, regulating inflammatory reactions, maintaining gut flora balance, reducing oxidative stress, and inhibiting apoptosis through specific signaling pathways. The article also examines the structure-function relationships of natural polysaccharides, providing critical insights into their antiviral mechanisms and emphasizing the importance of further comprehensive research and analysis. The review underscores the potential of polysaccharides from medicinal herbs as compelling candidates for combatting viral infections in both humans and animals.


References:

[1].   Wang, Y., Di, Y., Ye, J., Wei, W., 2021. Study on the Public Psychological States and its Related Factors During The Outbreak of Coronavirus Disease 2019 (COVID-19) in Some Regions of China. Psychology, Health & Medicine 26:13-22.

[2].   Patel, M. K., Bergeri I., Bresee J. S., Cowling B. J., Crowcroft N. S., et al. 2021. Evaluation of Post-Introduction COVID-19 Vaccine Effectiveness: Summary of Interim Guidance of the World Health Organization. Vaccine 39:4013-24.

[3].   Cao, X., 2020. COVID-19: Immunopathology and its Implications for therapy. Nature Reviews Immunology 20:269-70.

[4].   Al-Hakeim, H. K, Al-Rubaye, H. T, Al-Hadrawi, D. S., Almulla, A. F, Maes, M., 2023. Long-COVID Post-Viral Chronic Fatigue and Affective Symptoms Are Associated With Oxidative Damage, Lowered Antioxidant Defenses And Inflammation: A Proof of Concept And Mechanism Study. Molecular Psychiatry 28:564-78.

[5].   Mukherjee, P. K., Efferth, T., Das, B., Kar, A., Ghosh, S., et al. 2022. Role of Medicinal Plants in Inhibiting SARS-CoV-2 and in the Management of Post-COVID-19 Complications. Phytomedicine 98:153930.

[6].   Han, A. X., de Jong, S. P., Russell, C. A., 2023. Co-Evolution of Immunity And Seasonal Influenza Viruses. Nature Reviews Microbiology 21:805-17.

[7].   Peckham, R., 2020. Viral Surveillance and the 1968 Hong Kong Flu Pandemic. Journal of Global History 15:444-58.

[8].   Honigsbaum, M., 2020. Revisiting the 1957 and 1968 Influenza Pandemics. The Lancet 395:1824-6.

[9].   Li, Z., Li, L., Zhou, H., Zeng, L., Chen, T., et al. 2017. Radix Isatidis Polysaccharides Inhibit Influenza A Virus and Influenza A Virus-Induced Inflammation via Suppression of Host TLR3 Signaling in vitro. Molecules 22:116.

[10].  Sun, Z., Yu, C., Wang, W., Yu, G., Zhang, T., et al. 2018. Aloe Polysaccharides Inhibit Influenza A Virus Infection—A Promising Natural Anti-Flu Drug. Frontiers in Microbiology 9:2338

[11].  Li, Z., Cui, B., Liu, X., Wang, L., Xian, Q., et al. 2020. Virucidal Activity And The Antiviral Mechanism of Acidic Polysaccharides Against Enterovirus 71 Infection In Vitro. Microbiology and Immunology 64:189-201.

[12].  Bardsley, M., Morbey, R. A., Hughes, H. E., Beck, C. R., Watson, C. H, et al. 2023. Epidemiology of Respiratory Syncytial Virus in Children Younger Than 5 Years In England during the COVID-19 Pandemic, measured by Laboratory, Clinical, And Syndromic Surveillance: A Retrospective Observational Study. The Lancet Infectious Diseases 23:56-66.

[13].  Zhong, X., Zhang, Y., Yuan, M., Xu, L., Luo, X., et al. 2024. Prunella Vulgaris Polysaccharide Inhibits herpes simplex virus infection By Blocking TLR-Mediated Nf-Κb Activation. Chinese Medicine 19:6.

[14].  Kim, M., Kim, S-R., Park, J., Mun, S-H., Kwak, M, et al. 2022. Structure and Antiviral Activity of a Pectic Polysaccharide from the Root of Sanguisorba Officinalis against Enterovirus 71 in vitro/vivo. Carbohydrate Polymers 281:119057.

[15].  Pu, X., Wang, H., Li, Y., Fan, W., Yu, S., 2013. Antiviral Activity Of Guiqi Polysaccharides against Enterovirus 71 in vitro. Virologica Sinica 28:352-9.

[16].  Lin, P., Wang, Q., Wang, Q., Chen, J., He, L., et al. 2024. Evaluation of the Anti-Atherosclerotic Effect for Allium Macrostemon Bge. Polysaccharides and Structural Characterization of its Newly Active Fructan. Carbohydrate Polymers 340:122289.

[17].  Shen, Y., Wu, S., Song, M., Zhang, H., Zhao, H., et al. 2024. The Isolation, Structural Characterization and Anti-Inflammatory Potentials of Neutral Polysaccharides from the Roots of Isatis indigotica Fort. Molecules 29:2683.

[18].  Lortholarie, M., Do Nascimento, J., Bonnard I., Catteau A., Le Guernic A., et al. Assessment of the Viral Contamination of Fecal Origin Over a Wide Geographical Area Using an Active Approach with Dreissena Polymorpha. Available at SSRN 4773740.

[19].  Ji, Y., Han, J., Moses, M., Wang, D., Wu, L., et al. 2024. The Antimicrobial Property of JY-1, A Complex Mixture of Traditional Chinese Medicine, Is Linked To It Abilities to Suppress Biofilm formation and Disrupt Membrane Permeability. Microbial Pathogenesis 189:106573.

[20].  Liu, T., Zhang, M., Niu, H., Liu, J., Ruilian, M., et al. 2019. Astragalus Polysaccharide from Astragalus Melittin Ameliorates Inflammation via Suppressing the Activation of TLR-4/NF-κB p65 Signal Pathway and Protects Mice from CVB3-induced Virus Myocarditis. International Journal of Biological Macromolecules 126:179-86.

[21].  Fatima, R., Sharma, M., Prasher, P., Gupta, G., Singh, K., et al. 2023. Elucidating the Antiviral Potential of Polysaccharides. EXCLI Journal 22:108.

[22].  Wang, C., Ruan, S., Gu, X., Zhu, B., 2018. Antiviral Activities of Radix Isatidis Polysaccharide Against type II Herpes Simplex Virus In Vitro. Food Science and Technology 38:180-3.

[23].  Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., Zandi, K., 2015. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review. BioMed Research International 2015:825203.

[24].  Lin, Z., Liao, W., Ren, J., 2016. Physicochemical Characterization of A Polysaccharide Fraction from Platycladus Orientalis (L.) Franco and its Macrophage Immunomodulatory and Anti-Hepatitis B Virus Activities. Journal of Agricultural and Food Chemistry 64:5813-23.

[25].  Cheng, D., Sun, L., Zou, S., Chen, J., Mao, H., et al. 2019. Antiviral Effects of Houttuynia Cordata Polysaccharide extract on Murine Norovirus-1 (MNV-1)—A Human Norovirus Surrogate. Molecules 24:1835.

[26].  Jin, M-Y., Li, M-Y., Huang, R-M., Wu, X-Y., Sun, Y-M., Xu, Z-L., 2021. Structural Features and Anti-inflammatory Properties of Pectic Polysaccharides: A Review. Trends in Food Science & Technology 107:284-98.

[27].  Singh, S, Murti, Y, Semwal, B., 2024. Antiviral Activity of Natural Herbs and their Isolated Bioactive Compounds: A Review. Combinatorial Chemistry & High Throughput Screening 27:2013-42.

[28].  28 Claus-Desbonnet, H., Nikly, E., Nalbantova, V., Karcheva-Bahchevanska, D., Ivanova, S., et al. 2022. Polysaccharides and their Derivatives as Potential Antiviral Molecules. Viruses 14:426.

[29].  Belongia, E. A., Naleway, A. L., 2003. Smallpox Vaccine: The Good, the Bad, and the Ugly. Clinical Medicine & Research 1:87-92.

[30].  Kausar, S., Said Khan, F., Ishaq Mujeeb Ur Rehman, M., Akram, M., Riaz, M., et al. 2021. A Review: Mechanism of Action of Antiviral Drugs. International Journal of Immunopathology and Pharmacology 35:20587384211002621.

[31].  Wang, J., Zhu, Q., Xing, X., Sun, D., 2024. A Mini-Review on the Common Antiviral Drug Targets of Coronavirus. Microorganisms 12:600.

[32].  Sun, K., Fournier, M., Sundberg, A. K., Song, I. H., 2024. Maribavir: Mechanism of Action, Clinical, and Translational Science. Clinical and Translational Science 17:e13696.

[33].  Du, R., Achi, J. G., Cui, Q., Rong, L., 2024. Paving New Roads Toward The Advancement of Broad‐Spectrum Antiviral Agents. Journal of Medical Virology 96:e29369.

[34].  De Clercq, E., 2004. Antiviral Drugs in Current Clinical Use. Journal of Clinical Virology 30:115-33.

[35].  Fan, Q., Zhang, B., Ma, J., Zhang, S., 2020. Safety Profile of the Antiviral Drug Remdesivir: An Update. Biomedicine & Pharmacotherapy 130:110532.

[36].  Gonçalves, B. C., Lopes Barbosa, M. G., Silva Olak, A. P., Belebecha Terezo, N., Nishi, L., et al. 2021. Antiviral Therapies: Advances and Perspectives. Fundamental & Clinical Pharmacology 35:305-20.