Synergistic Analgesic Effect of Salmon Calcitonin Loaded PLGA Nanoparticles – In Vivo Study

Download Article

DOI: 10.21522/TIJPH.2013.12.03.Art029

Authors : G. Vishnu Priya, B. Balaji

Abstract:

Salmon calcitonin (subcutaneous or intranasal) has been shown to have an analgesic effect in individuals suffering from a variety of painful skeletal diseases, including nontraumatic osteoporotic vertebral fractures, in multiple prospective clinical studies. Several assessments have determined that salmon calcitonin is a secure and efficacious option for osteoporosis therapy. The precise process through which calcitonin mitigates pain is not yet understood. It's theorized that there may be specific receptors in the brain for salmon calcitonin, or that alterations in serotonergic descending pathways affecting sensory transmission via C fibers account for calcitonin's pain-relief effects in osteoporotic patients. To study this substance, Salmon Calcitonin attached to PLGA nanoparticles (SC-PLGA NPs) has been developed using dual-emulsion (W/O/W) and solid-oil dipping techniques. The morphology of the particles was analysed by scanning electron microscopy, and their analgesic effectiveness was evaluated in vivo using the tail flick method. Male albino rats with body weights between 160 and 180 grams were used for the study. Nano-sized particles ranging from 400–550 nm, mostly spherical with a limited size variance, have been synthesized. Studies confirmed that PLGA nanoparticles carrying salmon calcitonin effectively diminished pain swiftly. Groups treated with SC-PLGA nanoparticles experienced significant pain relief, confirmed by the tail flick test. Statistical evaluation via the Mann-Whitney test demonstrated that 93.33% of mice that underwent subcutaneous-PLGA nanoparticle treatment exhibited improvements. The creation of these nanoparticles carrying Salmon calcitonin correlates strongly with positive results.

References:

[1] Kumar, K. H., & Elavarasi, P., 2016, Definition of Pain and Classification of Pain Disorders. Journal of Advanced Clinical Research Insights, 3, 87–90. https://doi:10.15713/ins.jcri.112
[2] Stanton-Hicks, M., Jänig, W., Hassenbusch, S., Haddox, J., Boas, R., & Wilson, P., 1995, Reflex Sympathetic Dystrophy: Changing Concepts and Taxonomy. Pain, 63(1), 127–133. https://pubmed.ncbi.nlm.nih.gov/8577483/
[3] Zolhavarieh, S. M., Mousavi-Bahar, S. H., Mohseni, M., Emam, A. H., Poorolajal, J., & Majzoubi, F., 2019, Efeito do Acetaminofeno versus Fentanil Intravenosos na dor pós Litotripsia Transuretral [Effect of Intravenous Acetaminophen versus Fentanyl on Postoperative pain after Transurethral Lithotripsy]. Brazilian Journal of Anesthesiology (Elsevier), 69(2), 131–136. https://doi.org/10.1016/j.bjan.2018.06.009
[4] Yazdani, J., Khiavi, R. K., Ghavimi, M. A., Mortazavi, A., Hagh, E. J., & Ahmadpour, F. (2019). Calcitonina como agente analgésico: Revisão dos mecanismos de ação e das aplicações clínicas [Calcitonin as an Analgesic Agent: Review of Mechanisms of Action and Clinical Applications]. Brazilian Journal of Anesthesiology, 69(6), 594–604. https://doi.org/10.1016/j.bjan.2019.08.004
[5] Wei, J., Wang, J., Gong, Y., & Zeng, R., 2015, Effectiveness of Combined Salmon Calcitonin and Aspirin Therapy for Osteoporosis in Ovariectomized Rats. Molecular Medicine Reports, 12, 1717-1726. https://doi.org/10.3892/mmr.2015.3637
[6] Muñoz-Torres, M., Alonso, G., & Mezquita Raya, P., 2004, Calcitonin Therapy In Osteoporosis. Treatments in Endocrinology, 3(2), 117–132. https://pubmed.ncbi.nlm.nih.gov/15743107/
[7] McLaughlin, M. B., Awosika, A. O., & Jialal, I., 2023, Calcitonin. In StatPearls (Updated August 17, 2023). Treasure Island, FL: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537269/
[8] Chesnut, C. H., Azria, M., Silverman, S., Engelhardt, M., Olson, M., & Mindeholm, L., 2008, Salmon Calcitonin: A Review of Current and Future Therapeutic Indications. Osteoporosis International, 19(4), 479–491. https://doi.org/10.1007/s00198-007-0541-0
[9] Zinger, A., Brozovich, A., Pasto, A., Sushnitha, M., Martinez, J. O., Evangelopoulos, M., Boada, C., Tasciotti, E., & Taraballi, F., 2020, Bioinspired Extracellular Vesicles: Lessons Learned from Nature For Biomedicine And Bioengineering. *Nanomaterials, 10*(11), 2172. https://doi.org/10.3390/nano10112172Raisz, L. G., 2005, Pathogenesis of Osteoporosis: Concepts, Conflicts, and Prospects. Journal of Clinical Investigation, 115, 3318–3325
[10] Lee, Y. H., & Sinko, P. J., 2000, Oral Delivery of Salmon Calcitonin. Advanced Drug Delivery Reviews, 42(3), 225–238. https://doi.org/10.1016/S0169-409X(00)00023-5
[11] Yemitan, O. K., & Adeyemi, O. O., 2017, Mechanistic Assessment Of The Analgesic, Anti-Inflammatory And Antipyretic Actions Of Dalbergia Saxatilis In Animal Models. Pharmaceutical Biology, 55(1), 898–905. https://doi.org/10.1080/13880209.2017.1283706
[12] Hole, K., & Tjølsen, A., 2007, Tail Flick Test. In R. Schmidt & W. Willis (Eds.), Encyclopedia of Pain (pp. 431-433). Springer. https://doi.org/10.1007/978-3-540-29805-2_4375
[13] Sundjaja, J. H., Shrestha, R., & Krishan, K., 2023, McNemar and Mann-Whitney U tests. In StatPearls (Updated July 17, 2023). Treasure Island, FL: StatPearls Publishing. Available from https://www.ncbi.nlm.nih.gov/books/NBK560699/
[14] Jung, T. S., Kwon, B. S., Lee, H. E., Kim, A. Y., Lee, M. J., Park, C. R., Kang, H. K., Kim, Y. D., Lee, S. K., Kang, J. S., & Choi, G. J., 2009, Enhanced oral Absorption of Salmon Calcitonin-Encapsulated Plga Nanoparticles By Adding Organic Substances. Korean Journal of Chemical Engineering, 26(1), 131–135. https://doi.org/10.1007/s11814-009-0037-x
[15] Lyritis, G. P., & Trovas, G., 2002, Analgesic Effects of Calcitonin. Bone, 30(5), 71–74. https://doi.org/10.1016/S8756-3282(02)00717-8
[16] AHFS Patient Medication Information [Internet]. Bethesda (MD): American Society of Health-System Pharmacists, Inc.; c2024. Calcitonin Salmon; [updated 2024 Jun 20;]. Available from: https://medlineplus.gov/druginfo/meds/a601031.html
[17] Glowka, E., Sapin-Minet, A., Leroy, P., Lulek, J., & Maincent, P., 2010, Preparation and in vitro-in vivo Evaluation of Salmon Calcitonin-Loaded Polymeric Nanoparticles. Journal of Microencapsulation, 27(1), 25–36. https://doi.org/10.3109/02652040902751125
[18] Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V., 2012, PLGA-Based Nanoparticles: An Overview Of Biomedical Applications. Journal of Controlled Release, 161(2), 505-522. https://doi.org/10.1016/j.jconrel.2012.01.043
[19] Saha, S., Guria, T., Singha, T., & Maity, T. K., 2013, Evaluation of Analgesic and Anti-Inflammatory Activity of Chloroform and Methanol Extracts of Centella asiatica Linn. International Scholarly Research Notices, 2013. https://doi.org/10.1155/2013/589103
[20] Babaie, S., Taghvimi, A., Hong, J. H., Hamishehkar, H., An, S., & Kim, K. H., 2022, Recent Advances in Pain Management Based on Nanoparticle Technologies. Journal of Nanobiotechnology, 20(1), 290. https://doi.org/10.1186/s12951-022-01473-y