Intriguing Insights into Mycosporine-Like Amino Acids (MAAs), Chemical Complexity, Distinctive Identification and its Biomedical Applications

Download Article

DOI: 10.21522/TIJPH.2013.12.03.Art057

Authors : Maghimaa, M, Lakshmi Thangavelu, Prathima R, Avipsa Hazra, Gowrav Baradwaj, Kanthesh M Basalingappa, Sakshi Upendra Bhatia, Karthikeyan Murugesan, Bedanta Roy, Uthamalingam Murali

Abstract:

Road traffic accidents are one of the world's major sources of death and injury, with low- and middle-income nations suffering the most from them, despite having 60% of the world's automobiles. Two-wheeler accidents lead to a high rate of fatalities and severe injuries, disproportionately affecting young, economically active individuals and resulting in a considerable loss of productive life years. The impact of this death toll on society's socioeconomic output is valuable. This study evaluated the causes and patterns of injuries associated with two-wheeler road traffic accidents in the Chengalpattu region. In a Tertiary Care Hospital in Chengalpattu district, 296 two-wheeler RTA victims participated in six-month cross-sectional research from January to June 2023. Interviews with accident victims were conducted using a pre-tested, semi-structured questionnaire intended for injury patterns in road traffic accidents. Data were analysed using SPSS version 22. Among the participants in the study, 17.1% of the cases were linked to traffic accidents; the majority 51.7% occurred in the under-32 age group, and 80.7% of the cases involved males. Head and neck injuries accounted for 54.4% of all injuries, with upper extremities coming in second with 28.4%. During a collision, alcohol was consumed by 25.7% of the drivers who were involved. The majority of accidents, 37.8%, occur during the night hours from 6 p.m. to 12 midnight. The data reveals a concerning trend of head and limb injuries predominating, highlighting the vulnerability of motorcyclists and scooter riders to severe trauma, particularly to the head and extremities.

References:

[1].   Wada, N., Sakamoto, T., & Matsugo, S. (2015). Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants4(3), 603-646.

[2].   Kageyama, H., &Waditee-Sirisattha, R. (2018). Mycosporine-like amino acids as multifunctional secondary metabolites in cyanobacteria: From biochemical to application aspects. Studies in natural products chemistry59, 153-194.

[3].   Rosic, N. N. (2019). Mycosporine-like amino acids: making the foundation for organic personalised sunscreens. Marine drugs17(11), 638.

[4].   Chrapusta, E., Kaminski, A., Duchnik, K., Bober, B., Adamski, M., &Bialczyk, J. (2017). Mycosporine-like amino acids: Potential health and beauty ingredients. Marine drugs15(10), 326.

[5].   Geraldes, V., & Pinto, E. (2021a). Mycosporine-like amino acids (MAAs): Biology, chemistry and identification features. Pharmaceuticals14(1), 63.

[6].   Raj, S., Kuniyil, A. M., Sreenikethanam, A., Gugulothu, P., Jeyakumar, R. B., & Bajhaiya, A. K. (2021). Microalgae as a source of mycosporine-like amino acids (MAAs); advances and future prospects. International Journal of Environmental Research and Public Health18(23), 12402.

[7].   Punchakara, A., Prajapat, G., Bairwa, H. K., Jain, S., & Agrawal, A. (2023). Applications of mycosporine-like amino acids beyond photoprotection. Applied and Environmental Microbiology89(11), e00740-23.

[8].   Zhang, H., Jiang, Y., Zhou, C., Chen, Y., Yu, G., Zheng, L., ... & Li, R. (2022). Occurrence of mycosporine-like amino acids (MAAs) from the bloom-forming cyanobacteria Aphanizomenon strains. Molecules27(5), 1734.

[9].   Nazifi, E., Wada, N., Asano, T., Nishiuchi, T., Iwamuro, Y., Chinaka, S., ...& Sakamoto, T. (2015). Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacteriumNostoc commune. Journal of Photochemistry and Photobiology B: Biology142, 154-168.

[10].  Hu, C., Völler, G., Süßmuth, R., Dittmann, E., &Kehr, J. C. (2015). Functional assessment of mycosporine‐like amino acids in M icrocystisaeruginosa strain PCC 7806. Environmental microbiology17(5), 1548-1559.

[11].  Gao, Y., Xiong, W., Li, X. B., Gao, C. F., Zhang, Y. L., Li, H., & Wu, Q. Y. (2009). Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. Journal of experimental botany60(4), 1141-1154.

[12].  Singh, V. K., Jha, S., Rana, P., Mishra, S., Kumari, N., Singh, S. C., ... & Sinha, R. P. (2023). Resilience and mitigation strategies of cyanobacteria under ultraviolet radiation stress. International Journal of Molecular Sciences24(15), 12381.

[13].  Carreto, J. I., &Carignan, M. O. (2011). Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Marine drugs9(3), 387-446.

[14].  Llewellyn, C. A., Greig, C., Silkina, A., Kultschar, B., Hitchings, M. D., & Farnham, G. (2020). Mycosporine-like amino acid and aromatic amino acid transcriptome response to UV and far-red light in the cyanobacterium Chlorogloeopsis fritschii PCC 6912. Scientific Reports10(1), 20638.

[15].  Singh, S. P., Klisch, M., Sinha, R. P., &Häder, D. P. (2010). Sulfur deficiency changes mycosporine‐like amino acid (MAA) composition of Anabaena variabilis PCC 7937: a possible role of sulfur in MAA bioconversion. Photochemistry and photobiology86(4), 862-870.

[16].  Singh, V. K., Jha, S., Rana, P., Gupta, A., Singh, A. P., Kumari, N., ... & Sinha, R. P. (2023). Application of synthetic biology approaches to high-yield production of mycosporine-like amino acids. Fermentation9(7), 669.

[17].  Lawrence, K. P., Long, P. F., & Young, A. R. (2018). Mycosporine-like amino acids for skin photoprotection. Current Medicinal Chemistry25(40), 5512-5527.

[18].  Pope, M. A., Spence, E., Seralvo, V., Gacesa, R., Heidelberger, S., Weston, A. J., ... & Long, P. F. (2015). O‐Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine‐like amino acid biosynthesis in Anabaena variabilis ATCC 29413. ChemBioChem16(2), 320-327.

[19].  Fuentes-Tristan, S., Parra-Saldivar, R., Iqbal, H. M., & Carrillo-Nieves, D. (2019). Bioinspired biomolecules: Mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. Journal of Photochemistry and Photobiology B: Biology201, 111684.

[20].  Jain, S., Prajapat, G., Abrar, M., Ledwani, L., Singh, A., &Agrawal, A. (2017). Cyanobacteria as efficient producers of mycosporine‐like amino acids. Journal of Basic Microbiology57(9), 715-727.

[21].  Amador-Castro, F., Rodriguez-Martinez, V., & Carrillo-Nieves, D. (2020). Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. Science of the Total Environment749, 141576.

[22].  Sun, Y., Han, X., Hu, Z., Cheng, T., Tang, Q., Wang, H., ... & Han, X. (2021). Extraction, isolation and characterization of mycosporine-like amino acids from four species of red macroalgae. Marine Drugs19(11), 615.

[23].  Geraldes, V., de Medeiros, L. S., Jacinavicius, F. R., Long, P. F., & Pinto, E. (2020). Development and validation of a rapid LC-MS/MS method for the quantification of mycosporines and mycosporine-like amino acids (MAAs) from cyanobacteria. Algal research46, 101796.

[24].  Chaves-Peña, P., de la Coba, F., Figueroa, F. L., & Korbee, N. (2019). Quantitative and qualitative HPLC analysis of mycosporine-like amino acids extracted in distilled water for cosmetical uses in four rhodophyta. Marine drugs18(1), 27.

[25].  Singh, A., Čížková, M., Bišová, K., &Vitova, M. (2021). Exploring mycosporine-like amino acids (MAAs) as safe and natural protective agents against UV-induced skin damage. Antioxidants10(5), 683.

[26].  Singh, D. K., Pathak, J., Pandey, A., Singh, V., Ahmed, H., Kumar, D., &Sinha, R. P. (2020). Ultraviolet-screening compound mycosporine-like amino acids in cyanobacteria: Biosynthesis, functions, and applications. In Advances in cyanobacterial biology (pp. 219-233). Academic Press.

[27].  Sinha, R. P., Pathak, J., Ahmed, H., Pandey, A., Singh, P. R., Mishra, S., &Häder, D. P. (2021). Cyanobacterialphotoprotective compounds: Characterization and utilization in human welfare. In Natural Bioactive Compounds (pp. 83-114). Academic Press.

[28].  Babele, P. K., Singh, G., Singh, A., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2017). UV-B radiation and temperature stress-induced alterations in metabolic events and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa. Acta physiologiae plantarum39, 1-11.

[29].  Görünmek, M., Ballık, B., Çakmak, Z.E. and Çakmak, T., 2024. Mycosporine-like amino acids in microalgae and cyanobacteria: Biosynthesis, diversity, and applications in biotechnology. Algal Research, p.103507.

[30].  Salian, A., Dutta, S. and Mandal, S., 2021. A roadmap to UV-protective natural resources: Classification, characteristics, and applications. Materials Chemistry Frontiers5(21), pp.7696-7723.

[31].  Wang, K., Deng, Y., He, Y., Cao, J., Zhang, L., Qin, L., Qu, C., Li, H. and Miao, J., 2023. Protective Effect of Mycosporine-like Amino Acids Isolated from an Antarctic Diatom on UVB-Induced Skin Damage. International Journal of Molecular Sciences24(20), p.15055.

[32].  Yuliastrin, A., Berlian, M., Vebrianto, R., Freshaamanda, F., 2023. Penilaian Produk E-Modul Berbasis PBL: E-Modul Efek Rumah Kaca. Milenial: Journal for Teachers and Learning4(1), 1-7.

[33].  Babu, B. V., Mohanraj, K. G., 2019. Osteometric analysis of thoracic vertebrae with reference to pedicle and its clinical applications. Drug Invention Today, 11(10).

[34].  Gajapriya, M., Mohanraj, K. G. 2019. Morphological and morphometrical analysis of talus bone with reference to sinus tarsi in dry human talar bone and its clinical applications. Drug Invention Today, 12(9).