Green Synthesis and Characterization of Cobalt Nanoparticles Using Butea Monosperma Flower Extract and their Biocompatibility Studies

Download Article

DOI: 10.21522/TIJPH.2013.12.03.Art008

Authors : Suraneni Venkata Dhruv Sudhakar Rao, Mukesh Kumar Dharmalingam Jothinathan, S. Preetha, Sivasankari Sekar, Iadalin Ryntathiang, Archana Behera, Santosh Saravanan

Abstract:

This study explores the green synthesis of cobalt nanoparticles (CoNPs) using Butea monosperma flower extract, highlighting their antibacterial efficacy, toxicity, and biocompatibility. Utilizing a plant-based reduction method, cobalt ions were reduced and stabilized by the bioactive compounds in the flower extract, forming CoNPs with notable uniformity and stability. Characterization techniques, including, UV-VIS spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDAX), confirmed the formation and nature of the nanoparticles, which exhibited an average size of 10-20 nm. The synthesized CoNPs demonstrated significant antibacterial activity against both Gram-positive and Gram-negative bacteria, suggesting their potential as effective antimicrobial agents. Toxicity assessment using zebrafish, and brine shrimp lethality assay (BSLA), revealed that the nanoparticles exhibited minimal toxicity. Biocompatibility studies further indicated that CoNPs had no adverse effects on cellular morphology or proliferation, highlighting their suitability for biomedical applications. The eco-friendly synthesis method not only provides a sustainable approach to nanoparticle production but also enhances the potential for their safe application in medical and environmental fields. The findings underscore the promise of B. monosperma-mediated CoNPs as a viable alternative to chemically synthesized nanoparticles, with significant implications for antibacterial therapies and biocompatible materials.

References:

[1].   Vodyashkin, A. A., Kezimana, P., Prokonov, F. Y., Vasilenko, I. A., and Stanishevskiy, Y. M., 2022. Current Methods for Synthesis and Potential Applications of Cobalt Nanoparticles: A review. Crystals, 12(2),272. https://doi.org/10.3390/cryst12020272

[2].   Alsaiari, N. S., Alzahrani, F. M., Amari, A., Osman, H., Harharah, H. N., Elboughdiri, N., and Tahoon, M. A., 2023. Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. Molecules, 28(1), 463. https://doi.org/10.3390/molecules28010463

[3].   Srivathsan, J., Sivakami, V., Ramachandran, B., Harikrishna, K.S., Vetriselvi, S. and Kumar, D.J.M., 2012. Synthesis of silver nanoparticles and its effect on soil bacteria. J. Microbiol. Biotech. Res2(6), pp.871-874.

[4].   Khusnuriyalova, A. F., Caporali, M., Hey‐Hawkins, E., Sinyashin, O. G., and Yakhvarov, D. G., 2021. Preparation of Cobalt Nanoparticles. European Journal of Inorganic Chemistry, 2021(30), 3023-3047. https://doi.org/10.1002/ejic.202100367

[5].   Pusta, A., Tertis, M., Crăciunescu, I., Turcu, R., Mirel, S., and Cristea, C., 2023. Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials. Pharmaceutics, 15(7), 1872. https://doi.org/10.3390/pharmaceutics15071872

[6].   Farzin, A., Etesami, S. A., Quint, J., Memic, A., and Tamayol, A., 2020. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Advanced Healthcare Materials, 9(9), 1901058. https://doi.org/10.1002/adhm.201901058

[7].   Ryntathiang, I., Behera, A., Richard, T., and Jothinathan, M. K. D., 2024. An Assessment of the in Vitro Antioxidant Activity of Cobalt Nanoparticles Synthesized from Millettia Pinnata, Butea Monosperma, and Madhuca Indica Extracts: A Comparative Study. Cureus, 16(4), e59112. https://doi.org/10.7759/cureus.59112

[8].   Abass, A. A., Alaarage, W. K., Abdulrudha, N. H., and Haider, J., 2021. Evaluating the Antibacterial Effect of Cobalt Nanoparticles Against Multi-Drug Resistant Pathogens. Journal of Medicine and Life, 14(6), 823. https://doi.org/10.25122/jml-2021-0270

[9].   Kharade Suvarta, D., Nikam Gurunath, H., Mane Gavade Shubhangi, J., Patil Sachinkumar, R., and Gaikwad Kishor, V., 2020. Biogenic Synthesis of Cobalt Nanoparticles using Hibiscus Cannabinus Leaf Extract and their Antibacterial Activity. Research Journal of Chemistry and Environment, 24(5), 9-13. https://www.researchgate.net/profile/Sachinkumar-Patil/publication/340844918

[10].           Cruz, J. C., Nascimento, M. A., Amaral, H. A., Lima, D. S., Teixeira, A. P. C., and Lopes, R. P., 2019. Synthesis and Characterization of Cobalt Nanoparticles for Application in the Removal of Textile Dye. Journal of Environmental Management, 242, 220-228. https://doi.org/10.1016/j.jenvman.2019.04.059

[11].   Fardood, S. T., Forootan, R., Moradnia, F., Afshari, Z., and Ramazani, A., 2020. Green Synthesis, Characterization, and Photocatalytic Activity of Cobalt Chromite Spinel Nanoparticles. Materials Research Express, 7(1), p.015086. https://doi.org/10.1088/2053-1591/ab6c8d

[12].   Kus-Liśkiewicz, M., Fickers, P., and Ben Tahar, I., 2021. Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations. International Journal of Molecular Sciences, 22(20), 10952. https://doi.org/10.3390/ijms222010952

[13].  Ansari, S. M., Bhor, R. D., Pai, K. R., Sen, D., Mazumder, S., Ghosh, K., Kolekar, Y. D., and Ramana, C.V., 2017. Cobalt Nanoparticles for Biomedical Applications: Facile Synthesis, Physiochemical Characterization, Cytotoxicity Behavior and Biocompatibility. Applied Surface Science, 414, 171-187. https://doi.org/10.1016/j.apsusc.2017.03.002

[14].  Bittner, M., Štern, A., Smutná, M., Hilscherová, K., and Žegura, B., 2021. Cytotoxic and Genotoxic Effects of Cyanobacterial and Algal Extracts—Microcystin and Retinoic Acid Content. Toxins, 13(2), 107. https://doi.org/10.3390/toxins13020107

[15].  Zhao, W., Chen, Y., Hu, N., Long, D., and Cao, Y., 2024. The Uses of Zebrafish (Danio rerio) as an in Vivo Model for Toxicological Studies: A Review Based on Bibliometrics. Ecotoxicology and Environmental Safety, 272, 116023. https://doi.org/10.1016/j.ecoenv.2024.116023

[16].  Modarresi Chahardehi, A., Arsad, H., and Lim, V., 2020. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants, 9(10),1345. https://doi.org/10.3390/plants9101345

[17].  Haque, E., and Ward, A. C., 2018. Zebrafish as a Model to Evaluate Nanoparticle Toxicity. Nanomaterials, 8(7), 561. https://doi.org/10.3390/nano8070561

[18].  Miyawaki, I., 2020. Application of Zebrafish to Safety Evaluation in Drug Discovery. Journal of Toxicologic Pathology, 33(4), 197-210. https://doi.org/10.1293/tox.2020-0021

[19].  Payne-Sturges, D. C., Scammell, M. K., Levy, J. I., Cory-Slechta, D. A., Symanski, E., Carr Shmool, J. L., Laumbach, R., Linder, S., and Clougherty, J. E., 2018. Methods for Evaluating the Combined Effects of Chemical and Nonchemical Exposures for Cumulative Environmental Health Risk Assessment. International Journal of Environmental Research and Public Health, 15(12), 2797. https://doi.org/10.3390/ijerph15122797

[20].  Cassar, S., Adatto, I., Freeman, J. L., Gamse, J. T., Iturria, I., Lawrence, C., Muriana, A., Peterson, R. T., Van Cruchten, S., and Zon, L. I., 2019. Use of Zebrafish in Drug Discovery Toxicology. Chemical Research in Toxicology, 33(1), 95-118. https://doi.org/10.1021/acs.chemrestox.9b00335

[21].  Frisch, E., Clavier, L., Belhamdi, A., Vrana, N. E., Lavalle, P., Frisch, B., Heurtault, B., and Gribova, V., 2023. Preclinical in Vitro Evaluation of Implantable Materials: Conventional Approaches, New Models and Future Directions. Frontiers in Bioengineering and Biotechnology, 11, 1193204. https://doi.org/10.3389/fbioe.2023.1193204

[22].  Othman, Z., Pastor, B. C., van Rijt, S., and Habibovic, P., 2018. Understanding Interactions Between Biomaterials and Biological Systems Using Proteomics. Biomaterials, 167, 191-204. https://doi.org/10.1016/j.biomaterials.2018.03.020

[23].  Egbuna, C., Parmar, V. K., Jeevanandam, J., Ezzat, S. M., Patrick-Iwuanyanwu, K. C., Adetunji, C. O., Khan, J., Onyeike, E. N., Uche, C. Z., Akram, M., and Ibrahim, M. S., 2021. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. Journal of Toxicology, 2021(1), 9954443. https://doi.org/10.1155/2021/9954443

[24].  Witika, B. A., Makoni, P. A., Matafwali, S. K., Chabalenge, B., Mwila, C., Kalungia, A. C., Nkanga, C. I., Bapolisi, A. M. and Walker, R. B., 2020. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. Nanomaterials, 10(9),1649. https://doi.org/10.3390/nano10091649

[25].  Ryntathiang, I., Jothinathan, M. K. D., Behera, A., Saravanan, S., and Murugan, R., 2024. Comparative Bioactivity Analysis of Green-Synthesized Metal (Cobalt, Copper, and Selenium) Nanoparticles. Cureus, 16(3), e55933. https://doi.org/10.7759/cureus.55933

[26].  Munusamy, T., and Shanmugam, R., 2023. Green Synthesis of Copper Oxide Nanoparticles Synthesized by Terminalia chebula Dried Fruit Extract: Characterization and Antibacterial Action. Cureus, 15(12), e50142. https://doi.org/10.7759/cureus.50142

[27].  Anandan, J., and Shanmugam, R., 2024. Antioxidant, Anti-inflammatory, and Antimicrobial Activity of the Kalanchoe Pinnata and Piper Longum Formulation Against Oral Pathogens. Cureus, 16(4), e57824. https://doi.org/10.7759/cureus.57824

[28].  Rajeshkumar, S., Santhoshkumar, J., Vanaja, M., Sivaperumal, P., Ponnanikajamideen, M., Ali, D., and Arunachalam, K., 2022. Evaluation of Zebrafish Toxicology and Biomedical Potential of Aeromonas Hydrophila Mediated Copper Sulfide Nanoparticles. Oxidative Medicine and Cellular Longevity, 2022(1), 7969825. https://doi.org/10.1155/2022/7969825

[29].  Sankar, H. N., Shanmugam, R., and Anandan, J., 2024. Green Synthesis of Euphorbia Tirucalli-Mediated Titanium Dioxide Nanoparticles Against Wound Pathogens. Cureus, 16(2), e53939. https://doi.org/10.7759/cureus.53939

[30].  Ameena, M., Arumugham, M., Ramalingam, K., Rajeshkumar, S., and Perumal, E., 2023. Cytocompatibility and Wound Healing Activity of Chitosan Thiocolchicoside Lauric Acid Nanogel in Human Gingival Fibroblast Cells. Cureus, 15(8), e43727. https://doi.org/10.7759/cureus.43727

[31].  Ali, H., Dixit, S., and Alarifi, S., 2024. Biosynthesis and Screening of Cobalt Nanoparticles Using Citrus Species for Antimicrobial Activity. Open Chemistry, 22(1), 20240021. https://doi.org/10.1515/chem-2024-0021

[32].  Ali, S. G., Ansari, M. A., Alzohairy, M. A., Alomary, M. N., Jalal, M., AlYahya, S., Asiri, S. M. M. and Khan, H. M., 2020. Effect of Biosynthesized ZnO Nanoparticles on Multi-Drug Resistant Pseudomonas Aeruginosa. Antibiotics, 9(5), 260. https://doi.org/10.3390/antibiotics9050260

[33].  Kalanakoppal Venkatesh, Y., Mahadevaiah, R., Haraluru Shankaraiah, L., Ramappa, S., and Sannagoudar Basanagouda, A., 2018. Preparation of a CaO Nanocatalyst and its Application for Biodiesel Production Using Butea Monosperma Oil: An Optimization Study. Journal of the American Oil Chemists' Society, 95(5), 635-649. https://doi.org/10.1002/aocs.12079

[34].  Kumar, V., Harini, R., Anitha, G., and Nagaraju, G., 2024. Facile Green Synthesis of Zn Doped MoO3 Nanoparticles and its Photocatalytic and Photoluminescence Studies. Journal of Molecular Structure, 1312, 138494. https://doi.org/10.1016/j.molstruc.2024.138494

[35].  Mubraiz, N., Bano, A., Mahmood, T., and Khan, N., 2021. Microbial and Plant Assisted Synthesis of Cobalt Oxide Nanoparticles and their Antimicrobial Activities. Agronomy, 11(8), https://doi.org/1607.10.3390/agronomy11081607

[36].  Mmelesi, O. K., Masunga, N., Kuvarega, A., Nkambule, T.T., Mamba, B. B., and Kefeni, K. K., 2021. Cobalt Ferrite Nanoparticles and Nanocomposites: Photocatalytic, Antimicrobial Activity and Toxicity in Water Treatment. Materials Science in Semiconductor Processing, 123, 105523. https://doi.org/10.1016/j.mssp.2020.105523

[37].  Alyami, M. H., Fakhry, A. M., El Halfawy, N. M., Toto, S. M., Sedky, N. K., Yassin, H. A., Fahmy, S. A., and Mokhtar, F. A., 2023. Retama Monosperma Chemical Profile, Green Synthesis of Silver Nanoparticles, and Antimicrobial Potential: A Study Supported by Network Pharmacology and Molecular Docking. RSC Advances, 13(37), 26213-26228. https://doi.org/10.1039/D3RA05116A

[38].  Zafar, N., Madni, A., Khalid, A., Khan, T., Kousar, R., Naz, S. S. and Wahid, F., 2020. Pharmaceutical and Biomedical Applications of Green Synthesized Metal and Metal Oxide Nanoparticles. Current Pharmaceutical Design, 26(45), 5844-5865. https://doi.org/10.2174/1381612826666201126144805

[39].  Siddiqi, K. S., Rahman, A., Tajuddin, N., and Husen, A., 2018. Properties of Zinc Oxide Nanoparticles and their Activity Against Microbes. Nanoscale Research Letters, 13, 1-13. https://doi.org/10.1186/s11671-018-2532-3

[40].  d’Amora, M., Schmidt, T. J. N., Konstantinidou, S., Raffa, V., De Angelis, F., and Tantussi, F., 2022. Effects of Metal Oxide Nanoparticles in Zebrafish. Oxidative Medicine and Cellular Longevity, 2022(1), 3313016. https://doi.org/10.1155/2022/3313016

[41].  Chen, J., Lei, L., Mo, W., Dong, H., Li, J., Bai, C., Huang, K., Truong, L., Tanguay, R. L., Dong, Q., and Huang, C., 2021. Developmental Titanium Dioxide Nanoparticle Exposure Induces Oxidative Stress and Neurobehavioral Changes in Zebrafish. Aquatic Toxicology, 240, 105990. https://doi.org/10.1016/j.aquatox.2021.105990

[42].  Yan, S., Qian, Y., Haghayegh, M., Xia, Y., Yang, S., Cao, R., and Zhu, M., 2024. Electrospun Organic/Inorganic Hybrid Nanofibers for Accelerating Wound Healing: A Review. Journal of Materials Chemistry B, 12, 3171-3190. https://doi.org/10.1039/D4TB00149D

[43].  Chakraborty, C., Sharma, A. R., Sharma, G., and Lee, S. S., 2016. Zebrafish: A Complete Animal Model to Enumerate the Nanoparticle Toxicity. Journal of Nanobiotechnology, 14,1-13. https://doi.org/10.1186/s12951-016-0217-6