Exploring the Health Impact on Antimicrobial Contaminants in Leather Industries Effluent in Vellore, India: Distribution and Risk Analysis
Abstract:
This study investigates the
presence and risks of common industrial antimicrobial agents used, in the
vicinity of Vellore's leather industrial hub, Tamil Nadu, India. Water and
sediment samples (n=25 each) were collected from two major tannery clusters,
Ranipet and Ambur-Vaniyambadi. Using GC-MS and UPLC-DAD analyses, we attempted
to detect six major antimicrobial classes such as chlorinated phenols,
2-(Thiocyanomethylthio) benzothiazole (TCMTB), ortho phenyl phenol (OPP), Para
chloro m-cresol (PCMC), triclosan (TCS) and n-Octyl-isothiazolinone (n-OIT).
Among them, only TCMTB, OPP, and PCMK were recorded in water samples, whereas
in sediment samples none of the antimicrobials were found. Detection
frequencies in water were 24%, with PCMC levels reaching up to 910 µg/L, TCMTB
at 45.3 µg/L, and OPP at 821.3 µg/L. A comparative analysis with global studies
showed that contaminant levels in this study are significantly higher than in other
country reports. Human health risk assessment, based on USEPA methods, revealed
a risk quotient (RQ) of 5.200 for PCMC, indicating a potential health risk,
whereas TCMTB and OPP presented lower risks. Environmental risk assessment
indicated hazard quotients (HQ) >1 for all detected antimicrobials,
suggesting significant ecological risks. The study highlights the need for
stringent regulations, improved industrial practices, and better wastewater
treatment infrastructure. Continuous monitoring and more comprehensive studies with
increased sampling are essential to develop strategies for reducing
contaminants from leather industry runoff. These measures are crucial for
protecting human health and aquatic ecosystems in the region.
References:
[1]. Elekhnawy, E., Sonbol, F., Abdelaziz, A., & Elbanna, T., 2020, The Potential Impact of Biocide Adaptation on the Selection of Antibiotic Resistance in Bacterial Isolates. Future Journal of Pharmaceutical Sciences, 6(1). https://doi.org/10.1186/s43094-020-00119-w
[2]. Paul, D., Mondal, S. K., & Mandal, S. M. 2021, September 1, Biologia Futura: Use of Biocides During COVID-19-global Reshuffling of the Microbiota. Biologia Futura. Akademiai Kiado ZRt. https://doi.org/10.1007/s42977-021-00069-1
[3]. Anari, R. K., Nikkhahi, F., Javadi, Anari, A., et al. 2022, Evaluation of Antibacterial Activity of Five Biocides and the Synergistic Effect of Biocide/EDTA Combinations on Biofilm-Producing and Non-Producing Stenotrophomonas Maltophilia Strains Isolated from Clinical Specimens in Iran. BMC Microbiol 22, 257. https://doi.org/10.1186/s12866-022-02664-
[4]. Morrissey, I., Oggioni, M. R., Knight, D., Curiao, T., Coque, T., Kalkanci, A., et al. 2014, Evaluation of Epidemiological Cut-Off Values Indicates that Biocide Resistant Subpopulations are Uncommon in Natural Isolates of Clinically Relevant Microorganisms. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0086669
[5]. Government of Tamil Nadu. 2020, Tamil Nadu's Economic Contribution to India's GDP. State Government Publications. Retrieved from https://www.tn.gov.in/documents/economic-contribution. Clasen, B., et al. 2018, Determination of Selected Pesticides and Biocides in Surface Water Using Multi-Residue Analysis by UHPLC-MS/MS. Analytical and Bioanalytical Chemistry, 410(25), 6375-6388. https://doi.org/10.1007/s00216-018-1339-5Guardiola, F. A., Cuesta, A., Meseguer, J., & Esteban, M. A. (2012, February). Risks of Using Antifouling Biocides in Aquaculture. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms13021541Igbinosa et al., 2013
[6]. Vázquez, A., Alvarado, L., Lázaro, I., Cruz, R., Nava, J. L., & Rodríguez-Torres, I. 2018, A Comparative Analysis of 2-(Thiocyanomethylthio)- Benzothiazole Degradation Using Electro-Fenton and Anodic Oxidation on a Boron-Doped Diamond Electrode. International Journal of Photoenergy, 2018. https://doi.org/10.1155/2018/5290975
[7]. Liao, C., Kim, U. J., & Kannan, K. 2018, May 1. A Review of Environmental Occurrence, Fate, Exposure, and Toxicity of Benzothiazoles. Environmental Science and Technology. American Chemical Society. https://doi.org/10.1021/acs.est.7b05493
[8]. Coelhan, M., Bromig, K. H., Glas, K., & Roberts, A. L., 2006, Determination and Levels of the Biocide Ortho-Phenylphenol in Canned Beers from Different Countries. Journal of Agricultural and Food Chemistry, 54(16), 5731–5735. https://doi.org/10.1021/jf060743p
[9]. Bomhard, E. M., Brendler-Schwaab, S. Y., Freyberger, A., Herbold, B. A., Leser, K. H., & Richter, M., 2002, O-Phenylphenol and its Sodium and Potassium Salts: A Toxicological Assessment. Critical Reviews in Toxicology (Vol. 32).
[10]. Pizarro, A. H., Molina, C. B., Munoz, M., de Pedro, Z. M., Menendez, N., & Rodriguez, J. J., 2017, Combining HDC and CWPO for the Removal of p-chloro-m-cresol from Water Under Ambient-like Conditions. Applied Catalysis B: Environmental, 216, 20–29. https://doi.org/10.1016/j.apcatb.2017.05.052
[11]. Dhillon, G. S., Kaur, S., Pulicharla, R., Brar, S. K., Cledón, M., Verma, M., & Surampalli, R. Y., 2015, May 22. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. International Journal of Environmental Research and Public Health. MDPI. https://doi.org/10.3390/ijerph120505657
[12]. Dar, O. I., Aslam, R., Pan, D., Sharma, S., Andotra, M., Kaur, A., et al. 2022, February 1. Source, Bioaccumulation, Degradability and Toxicity of Triclosan in Aquatic Environments: A review. Environmental Technology and Innovation. Elsevier B.V. https://doi.org/10.1016/j.eti.2021.102122
[13]. Kim, D., Kim, E. H., Choi, S., Lim, K. M., Tie, L., Majid, A., & Bae, O. N., 2021, A Commonly used Biocide 2-N-Octyl-4-Isothiazolin-3-One Induces Blood–Brain Barrier Dysfunction Via Cellular Thiol Modification and Mitochondrial Damage. International Journal of Molecular Sciences, 22(5), 1–17. https://doi.org/10.3390/ijms22052563
[14]. Zuccarello, P., Ferrante, M., Cristaldi, A., Copat, C., Grasso, A., Sangregorio, D., Fiore, M., Oliveri Conti, G., Reply for Comment on "Exposure To Microplastics (<10 μm) Associated to Plastic Bottles Mineral Water Consumption: The First Quantitative Study by Zuccarello et al. [Water Research 157 (2019) 365-371]". Water Res. 2019 Dec 1;166:115077. doi: 10.1016/j.watres.2019.115077. Epub 2019 Sep 13. PMID: 31546101.
[15]. Li, L. F., Zeng, X. B., Li, G. X., & Mei, X. R., 2014, Surface Water Quality Assessment in Beijing (China) Using GIS-Based Mapping and Multivariate Statistical Techniques. In Advanced Materials Research (Vols. 955–959, pp. 1514–1526). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amr.955-959.1514 Naidoo et al., 2021)
[16]. Hutton, M., & Shafahi, M., "Water Pollution Caused by Leather Industry: A Review." Proceedings of the ASME 2019 13th International Conference on Energy Sustainability Collocated with the ASME 2019 Heat Transfer Summer Conference. ASME 2019 13th International Conference on Energy Sustainability. Bellevue, Washington, USA. July 14–17, 2019. V001T10A002. ASME. https://doi.org/10.1115/ES2019-3949
[17]. Johnson, L., et al. 2022, "Assessment of Industrial Pollutants in Surface Water: A Case Study from Kentucky, USA." Environmental Monitoring and Assessment. DOI: 10.1007/s10661-021-08768-7
[18]. Hartono, D., et al. 2020, "Pollutant Levels in Surface Water Near Industrial Areas in Jakarta, Indonesia." Journal of Environmental Science and Technology, DOI: 10.1080/10934529.2020.1753142
[19]. Meneses, E. S., Arguelho, M. L. P. M., & Alves, J. P. H., 2005, Electroreduction of the Antifouling Agent TCMTB and its Electroanalytical Determination in Tannery Wastewaters. Talanta, 67(4), 682–685. https://doi.org/10.1016/j.talanta.2005.01.058
[20]. Hornung, M. W., Kosian, P. A., Haselman, J. T., Korte, J. J., Challis, K., Macherla, C., et al. 2015, In Vitro, Ex Vivo, and in Vivo Determination of Thyroid Hormone Modulating Activity of Benzothiazoles. Toxicological Sciences, 146(2), 254–264. https://doi.org/10.1093/toxsci/kfv090
[21]. Teschke, K., He-man, C., Wiens, M., Dimich-Ward, H., Hershler, R., Ostry, A., & Kelly, S. J., 1992, Recognizing Acute Health Effects of Substitute Fungicides: Are First-Aid Reports Effective? American Journal of Industrial Medicine (Vol. 21).
[22]. Morrissey, I., Oggioni, M. R., Knight, D., Curiao, T., Coque, T., Kalkanci, A., et al. 2014, Evaluation of Epidemiological Cut-Off Values Indicates that Biocide Resistant Sub Populations are Uncommon in Natural Isolates of Clinically Relevant Microorganisms. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0086669
[23]. USEPA 1984, US Environmental Protection Agency Report on “Health Effects Assessment Summary (HEAST) for Thiocyanomethylthio) Benzothiazole”. Retrieved June 24, 2024, from https://rais.ornl.gov/epa/heast/ThiocyanomethylthioBenzothiazole2.html
[24]. Lau, W. W. Y., & Stenstrom, M. K., 2005, Metals and Organic Micro-Pollutants in Stormwater Runoff from a Commercial Land use Area. Water Environment Research, 77(2), 149-160. DOI:10.2175/106143005X41664.
[25]. Bollmann, U. E., Tang, C., Eriksson, E., Jönsson, K., Vollertsen, J., & Bester, K., 2014, Biocides in Urban Wastewater Treatment Plant Influent at Dry and Wet Weather: Concentrations, Mass Flows and Possible Sources. Water Research, 60, 64-74. DOI: 10.1016/j.watres.2014.04.041.
[26]. Ramaswamy, B. R., Shanmugam, G., Velu, G., Rengarajan, B., & Larsson, D. G. J., 2011, GC-MS Analysis and Ecotoxicological Risk Assessment of Triclosan, Carbamazepine and Parabens in Indian Rivers. Journal of Hazardous Materials, 186(2-3), 1586-1593. DOI: 10.1016/j.jhazmat.2010.12.037.
[27]. Fent, K., Weston, A. A., & Caminada, D., 2006, Ecotoxicology of Human Pharmaceuticals. Aquatic Toxicology, 76(2), 122-159. DOI: 10.1016/j.aquatox.2005.09.009.
[28]. Lu, X., Yuan, D., Chen, Y., & Fung, J. C. H., 2021, Impacts of Urbanization and Long-Term Meteorological Variations on Global PM2.5 and its Associated Health Burden. Environmental Pollution, 270, 116003. https://doi.org/10.1016/j.envpol.2020.116003
[29]. Xu, W. H., Zhang, G., Wai, O. W. H., Zou, S. C., & Li, X. D., 2009, Transport and adsorption of Antibiotics by Marine Sediments In A Dynamic Environment. Journal of Soils and Sediments, 9(4), 364–373. https://doi.org/10.1007/s11368-009-0091-z
[30]. Zhang, Y., Zhao, Y.-G., Maqbool, F., & Hu, Y. 2022, Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review. Journal of Water Process Engineering, 45, 102496. https://doi.org/10.1016/j.jwpe.2021.102496