Molecular and Epigenetic Studies on the Effect of Hesperidin on IRS-1/Akt/GLUT4 Signaling Molecules in the Gastrocnemius Muscle of Streptozotocin-induced Type-2 Diabetic Rats

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.03.Art016

Authors : Selvaraj Jayaraman, Vishnu Priya Veeraraghavan, Ponnulakshmi Rajagopal, Kritika C, Sureka Varalakshmi V, Vijayakumar Sakthivel, Perumal Palanisamy

Abstract:

Diabetes mellitus is a significant global health issue, affecting 425 million people worldwide, with projections estimating an increase to 629 million by 2045. The need for potent pharmacological agents is urgent, as current oral hypoglycemic drugs have adverse side effects. Hesperidin, a bioflavonoid with anti-hyperglycemic and anti-hyperlipidemic properties, offers promise as a natural therapeutic option. This study aimed to evaluate hesperidin's molecular and epigenetic effects on insulin signal transduction in the gastrocnemius muscle of STZ-induced type 2 diabetic rats. Methods involved dividing fully-grown male Wistar rats into five groups: Healthy control, STZ-induced diabetic, Diabetes+Hesperidin (100mg/kg), Diabetes+Metformin (50mg/kg), and Control+Hesperidin. At the experiment's conclusion, blood samples and gastrocnemius muscle tissues were collected to measure fasting blood glucose, serum insulin, antioxidant enzymes, oxidative stress markers, and histopathological and mRNA expression of insulin signalling molecules. Data were analyzed using one-way ANOVA, with significance set at p<0.05. Results indicated that STZ-induced diabetic rats exhibited significant increases in hyperglycemia, hyperinsulinemia, dyslipidemia, and oxidative stress markers, along with reduced superoxide dismutase (SOD) activity. Histopathological analysis revealed reduced muscle fibres and disrupted skeletal fibres. Additionally, mRNA expression of IRS-1, Akt, and GLUT 4 was significantly reduced. Remarkably, hesperidin treatment normalized these altered parameters. In conclusion, hesperidin effectively regulates insulin signalling in skeletal muscle, reducing diabetic risk. Thus, hesperidin shows potential as a therapeutic candidate for treating type 2 diabetes and its associated complications.

References:

[1] Manna, P., & Jain, S. K., 2015, Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic Syndrome and Related Disorders, 13(10), 423–444. https://doi.org/10.1089/met.2015.0095.

[2] Bindu Jacob, & Narendhirakannan, R.T., 2019, Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech, 9(1), 4. https://doi.org/10.1007/s13205-018-1528-0.

[3] Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T., 2019, Benefits of hesperidin in central nervous system disorders: a review. Anatomy & cell biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119.

[4] Giannini, I., Amato, A., Basso, L., Tricomi, N., Marranci, M., Pecorella, G., Tafuri, S., Pennisi, D., & Altomare, D. F., 2015, Flavonoids mixture (diosmin, troxerutin, hesperidin) in the treatment of acute hemorrhoidal disease: a prospective, randomized, triple-blind, controlled trial. Techniques in Coloproctology, 19(6), 339–345. https://doi.org/10.1007/s10151-015-1302-9.

[5] Prasad, M., Rajagopal, P., Devarajan, N., Veeraraghavan, V. P., Palanisamy, C. P., Cui, B., Patil, S., & Jayaraman, S., 2022, A comprehensive review on high -fat diet-induced diabetes mellitus: an epigenetic view. The Journal of Nutritional Biochemistry, 107, 109037. https://doi.org/10.1016/j.jnutbio.2022.109037.

[6] Georgel, P. T., & Georgel, P. (2021). Where Epigenetics Meets Food Intake: Their Interaction in the Development/Severity of Gout and Therapeutic Perspectives. Frontiers in Immunology, 12, 752359. https://doi.org/10.3389/fimmu.2021.752359.

[7] Drabkin, D.L., Austin, J.H., 1932, Spectrophotometric Studies: I. Spectrophotometric Constants for Common Hemoglobin Derivatives in Human, Dog, and Rabbit Blood. Journal of Biological Chemistry, 1932, 98, 719-733. 10.4236/oalib.1100648.

[8] Bannon P., 1982, Effect of pH on the elimination of the labile fraction of glycosylated hemoglobin. Clinical Chemistry, 28(10), 2183.

[9] Slaoui, M., & Fiette, L., 2011, Histopathology procedures: from tissue sampling to histopathological evaluation. Methods in molecular biology (Clifton, N.J.), 691, 69–82. https://doi.org/10.1007/978-1-60761-849-2_4.

[10] Gabe, M., 1968, Techniques Histologiques, 6th ed.; Massie e Cie: Paris, France, 1113p.

[11] Slaoui, M., & Fiette, L., 2011, Histopathology procedures: from tissue sampling to histopathological evaluation. Methods in Molecular Biology (Clifton, N.J.), 691, 69–82. https://doi.org/10.1007/978-1-60761-849-2_4.

[12] Gancedo, J. M., & Gancedo, C., 1971, Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Archiv fur Mikrobiologie, 76(2), 132–138. https://doi.org/10.1007/BF00411787.

[13] Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C., 2020, Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275.

[14] Merz, K. E., & Thurmond, D. C., 2020, Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Comprehensive Physiology, 10(3), 785–809. https://doi.org/10.1002/cphy.c190029.

[15] Thomas, D. D., Corkey, B. E., Istfan, N. W., & Apovian, C. M., 2019,  Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. Journal of the Endocrine Society, 3(9), 1727–1747. https://doi.org/10.1210/js.2019-00065.

[16] Wilcox G., 2005, Insulin and insulin resistance. The Clinical Biochemist. Reviews, 26(2), 19–39.

[17] Zhao, C., Yang, C., Wai, S. T. C., Zhang, Y., P Portillo, M., Paoli, P., Wu, Y., San Cheang, W., Liu, B., Carpéné, C., Xiao, J., & Cao, H., 2019, Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Critical Reviews in Food Science and Nutrition, 59(6), 830–847. https://doi.org/10.1080/10408398.2018.1501658.

[18] Stanley Mainzen Prince, P., & Kamalakkannan, N., 2006, Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. Journal of Biochemical and Molecular Toxicology, 20(2), 96–102. https://doi.org/10.1002/jbt.20117.

[19] Latha, M., & Pari, L., 2003, Antihyperglycaemic effect of Cassia auriculata in experimental diabetes and its effects on key metabolic enzymes involved in carbohydrate metabolism. Clinical and Experimental Pharmacology & Physiology, 30(1-2), 38–43. https://doi.org/10.1046/j.1440-1681.2003.03785.x.

[20] Peng, P., Jin, J., Zou, G., Sui, Y., Han, Y., Zhao, D., & Liu, L., 2021, Hesperidin prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway. Experimental and Therapeutic Medicine, 21(1), 53. https://doi.org/10.3892/etm.2020.9485.

[21] Pari, L., & Rajarajeswari, N., 2009, Efficacy of coumarin on hepatic key enzymes of glucose metabolism in chemical induced type 2 diabetic rats. Chemico-biological Interactions, 181(3), 292–296. https://doi.org/10.1016/j.cbi.2009.07.018.

[22] Gothandam, K., Ganesan, V. S., Ayyasamy, T., & Ramalingam, S., 2019, Antioxidant potential of theaflavin ameliorates the activities of key enzymes of glucose metabolism in high fat diet and streptozotocin - induced diabetic rats. Redox report : Communications in free radical research, 24(1), 41–50. https://doi.org/10.1080/13510002.2019.1624085.

[23] Boucher, J., Kleinridders, A., & Kahn, C. R., 2014, Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology, 6(1), a009191. https://doi.org/10.1101/cshperspect.a009191.

[24] Zhang Y, Xu W, Huang X et al., 2018, Fucoxanthin ameliorates hyperglycemia, hyperlipidemia and insulin resistance in diabetic mice partially through IRS-1/PI3K/Akt and AMPK pathways. Journal of Functional Foods, 48:515–524. 10.1016/j.jff.2018.07.048.

[25] Cai, S., Sun, W., Fan, Y., Guo, X., Xu, G., Xu, T., Hou, Y., Zhao, B., Feng, X., & Liu, T., 2016, Effect of mulberry leaf (Folium Mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharmaceutical Biology, 54(11), 2685–2691. https://doi.org/10.1080/13880209.2016.1178779.

[26] Wang, Y., Nishina, P. M., & Naggert, J. K., 2009, Degradation of IRS1 leads to impaired glucose uptake in adipose tissue of the type 2 diabetes mouse model TALLYHO/Jng. The Journal of Endocrinology, 203(1), 65–74. https://doi.org/10.1677/JOE-09-0026.

[27] Li, H., Yu, L., & Zhao, C., 2019, Dioscin attenuates high‑fat diet‑induced insulin resistance of adipose tissue through the IRS‑1/PI3K/Akt signaling pathway. Molecular Medicine Reports, 19(2), 1230–1237. https://doi.org/10.3892/mmr.2018.9700.

[28] Ramalingam, K., Yadalam, P. K., Ramani, P., Krishna, M., Hafedh, S., Badnjević, A., Cervino, G., & Minervini, G., 2024, Light gradient boosting-based prediction of quality of life among oral cancer-treated patients. BMC Oral Health, 24(1), 349. https://doi.org/10.1186/s12903-024-04050-x.

[29] Neralla, M., M, H., Preethi, A., Selvakumar, S. C., & Sekar, D., 2024, Expression levels of microRNA-7110 in oral squamous cell carcinoma. Minerva Dental and Oral Science, 73(3), 155–160. https://doi.org/10.23736/S2724-6329.23.04801-5.

[30] Ramsundar, K., Jain, R. K., Balakrishnan, N., & Vikramsimha, B., 2023, Comparative evaluation of bracket bond failure rates of a novel non-primer adhesive with a conventional primer-based orthodontic adhesive - a pilot study. Journal of Dental Research, Dental Clinics, Dental Prospects, 17(1), 35–39. https://doi.org/10.34172/joddd.2023.36953.