Studies on Anti-inflammatory and Anti-diabetic Potential of Andrographolide: Evidence from an In vitro, In silico and In vivo Study

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.03.Art013

Authors : Selvaraj Jayaraman, Vishnu Priya Veeraraghavan, Ponnulakshmi Rajagopal, Iniyaa Mullai M, Coimbatore Sadagopan Janaki, Jeane Rebecca Roy

Abstract:

Insulin function and sensitivity are compromised in type 2 diabetes (T2DM) due to various factors causing cellular stress and inflammation. With the increasing recognition of inflammation's role in both T1DM and T2DM, anti-inflammatory strategies are gaining importance in disease management. This study investigates the relationship between andrographolide and the enzymes α-glucosidase and α-amylase to elucidate its antidiabetic benefits. The study also evaluates andrographolide's ability to inhibit protein denaturation and examines its effects on the liver of T2DM rats through histological analysis. Methods included in vitro antidiabetic and anti-inflammatory activity assessments using α-glucosidase, α-amylase, and protein denaturation inhibition methods. Histopathological analysis of liver tissue from streptozotocin (STZ) and high-fat diet (HFD)-induced type-2 diabetic rats was conducted. In silico docking analysis was performed to confirm the binding affinity of andrographolide with pro-inflammatory signaling molecules. Data were analyzed using one-way ANOVA. Results indicated that molecular docking showed a good binding affinity with selected protein targets, attesting to andrographolide's powerful anti-inflammatory and antidiabetic effects. Histological analysis demonstrated that andrographolide could restore the hepatic architecture of diabetic livers. The in silico study further demonstrated high binding affinity against protein targets related to inflammatory and insulin signaling pathways. In conclusion, andrographolide may provide a promising basis for developing novel treatments and identifying critically needed pharmaceutical targets to address inflammation-related clinical problems in diabetes.

References:

[1] Ma, Q., Li, Y., Li, P., Wang, M., Wang, J., Tang, Z., Wang, T., Luo, L., Wang, C., Wang, T., & Zhao, B., 2019, Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & pharmacotherapy, 117, 109138. https://doi.org/10.1016/j.biopha.2019.109138.
[2] Roep, B. O., Thomaidou, S., van Tienhoven, R., & Zaldumbide, A., 2021, Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature reviews. Endocrinology, 17(3), 150–161. https://doi.org/10.1038/s41574-020-00443-4.
[3] Rebecca Roy, J., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., Veeraraghavan, V. P., Krishnamoorthy, K., & Prasad, M., 2023, Carica Papaya Reduces High Fat Diet and Streptozotocin-Induced Development of Inflammation in Adipocyte via IL-1β/IL-6/TNF-α Mediated Signaling Mechanisms in Type-2 Diabetic Rats. Current Issues in Molecular Biology, 45(2), 852–884. https://doi.org/10.3390/cimb45020056.
[4] Kandanur, S. G. S., Tamang, N., Golakoti, N. R., & Nanduri, S., 2019, Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. European Journal of Medicinal Chemistry, 176, 513–533. https://doi.org/10.1016/j.ejmech.2019.05.022.
[5] Jayakumar, T., Hsieh, C. Y., Lee, J. J., & Sheu, J. R., 2013, Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. Evidence-Based Complementary and Alternative Medicine : eCAM, 2013, 846740. https://doi.org/10.1155/2013/846740.
[6] Premanath, R., Nanjaiah, L., 2015, Antidiabetic and antioxidant potential of Andrographis paniculata Nees. leaf ethanol extract in streptozotocin induced diabetic rats. Journal of Applied Pharmaceutical Science, 5:069-076. 10.7324/JAPS.2015.50113.
[7] Tan, W. S. D., Liao, W., Zhou, S., & Wong, W. S. F., 2017, Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochemical Pharmacology, 139, 71–81. https://doi.org/10.1016/j.bcp.2017.03.024.
[8] Vishaka, S., Sridevi, G., & Selvaraj, J., 2022, An in vitro analysis on the antioxidant and anti-diabetic properties of Kaempferia galanga rhizome using different solvent systems. Journal of Advanced Pharmaceutical Technology & Research, 13(2), S505–S509. https://doi.org/10.4103/japtr.japtr_189_22.
[9] Prakasam, N.V., Devi, R.G., Selvaraj, J., 2022, In-vitro Antidiabetic on leaf extracts of Mimosa pudica and Euphorbia hirta-A Comparative Study. Research Journal of Pharmacy and Technology, 15:5459-5463. 10.52711/0974-360X.2022.00920.
[10] Kaddour, S.M., Arrar, L., Baghiani, A., 2020, Anti-Inflammatory Potential Evaluation (In-Vitro and In-Vivo) of Arthrophytum scoparium Aerial Part. JDDT, 10: 213-218. 10.22270/jddt.v10i5.4409.
[11] Neralla, M., M, H., Preethi, A., Selvakumar, S. C., & Sekar, D., 2024, Expression levels of microRNA-7110 in oral squamous cell carcinoma. Minerva dental and oral science, 73(3), 155–160. https://doi.org/10.23736/S2724-6329.23.04801-5.
[12] Nugroho, A. E., Andrie, M., Warditiani, N. K., Siswanto, E., Pramono, S., & Lukitaningsih, E., 2012, Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian Journal of Pharmacology, 44(3), 377–381. https://doi.org/10.4103/0253-7613.96343.
[13] Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Veeraraghavan, V. P., 2022, Carica papaya Reduces Muscle Insulin Resistance via IR/GLUT4 Mediated Signaling Mechanisms in High Fat Diet and Streptozotocin-Induced Type-2 Diabetic Rats. Antioxidants (Basel, Switzerland), 11(10), 2081. https://doi.org/10.3390/antiox11102081.
[14] Roy, J. R., Janaki, C. S., Jayaraman, S., Veeraraghavan, V. P., Periyasamy, V., Balaji, T., Vijayamalathi, M., Bhuvaneswari, P., & Swetha, P., 2023,Hypoglycemic Potential of Carica papaya in Liver Is Mediated through IRS-2/PI3K/SREBP-1c/GLUT2 Signaling in High-Fat-Diet-Induced Type-2 Diabetic Male Rats. Toxics, 11(3), 240. https://doi.org/10.3390/toxics11030240.
[15] Salehi, B., Ata, A., V Anil Kumar, N., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Abdulmajid Ayatollahi, S., Tsouh Fokou, P. V., Kobarfard, F., Amiruddin Zakaria, Z., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W. N., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., Ostrander, E. A., Sharifi-Rad, J., 2019, Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551.
[16] Mwakalukwa, R., Amen, Y., Nagata, M., & Shimizu, K., 2020, Postprandial Hyperglycemia Lowering Effect of the Isolated Compounds from Olive Mill Wastes - An Inhibitory Activity and Kinetics Studies on α-Glucosidase and α-Amylase Enzymes. ACS omega, 5(32), 20070–20079. https://doi.org/10.1021/acsomega.0c01622.
[17] Indu, S., Vijayalakshmi, P., Selvaraj, J., & Rajalakshmi, M., 2021, Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules (Basel, Switzerland), 26(22), 6812. https://doi.org/10.3390/molecules26226812.
[18] Ramalingam, K., Yadalam, P. K., Ramani, P., Krishna, M., Hafedh, S., Badnjević, A., Cervino, G., & Minervini, G., 2024, Light gradient boosting-based prediction of quality of life among oral cancer-treated patients. BMC Oral Health, 24(1), 349. https://doi.org/10.1186/s12903-024-04050-x.
[19] Dirir, A. M., Daou, M., Yousef, A. F., & Yousef, L. F., 2022, A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Peviews : Proceedings of the Phytochemical Society of Europe, 21(4), 1049–1079. https://doi.org/10.1007/s11101-021-09773-1.
[20] Kashtoh, H., & Baek, K. H., 2022, Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants (Basel, Switzerland), 11(20), 2722. https://doi.org/10.3390/plants11202722.
[21] American Diabetes Association., 2020, Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care, 43(Suppl 1), S98–S110. https://doi.org/10.2337/dc20-S009.
[22] Somtimuang, C., Olatunji, O. J., & Ovatlarnporn, C., 2018, Evaluation of In Vitro α-Amylase and α-Glucosidase Inhibitory Potentials of 14 Medicinal Plants Constituted in Thai Folk Antidiabetic Formularies. Chemistry & Biodiversity, 15(4), e1800025. https://doi.org/10.1002/cbdv.201800025. 
[23] Kurutas E. B., 2016, The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal, 15(1), 71. https://doi.org/10.1186/s12937-016-0186-5.
[24] Salve, P., Vinchurkar, A., Raut, R., Chondekar, R., Lakkakula, J., Roy, A., Hossain, M. J., Alghamdi, S., Almehmadi, M., Abdulaziz, O., Allahyani, M., Dablool, A. S., Sarker, M. M. R., & Nur Azlina, M. F., 2022, An Evaluation of Antimicrobial, Anticancer, Anti-Inflammatory and Antioxidant Activities of Silver Nanoparticles Synthesized from Leaf Extract of Madhuca longifolia Utilizing Quantitative and Qualitative Methods. Molecules (Basel, Switzerland), 27(19), 6404. https://doi.org/10.3390/molecules27196404.
[25] Dharmadeva, S., Galgamuwa, L. S., Prasadinie, C., & Kumarasinghe, N., 2018, In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu, 39(4), 239–242. https://doi.org/10.4103/ayu.AYU_27_18.
[26] Dsouza, M.R., Athoibi, S., Prabha, S., 2020, Pharmacognostical Investigation of Andrographis paniculata (Green Chiretta) and Crystallization of the Bioactive component Andrographolide. Int. J. Pharmtech Res. 13: 40-50. 10.20902/ijptr.2019.130207.
[27] Harsha, L., & Subramanian, A. K., 02022, Comparative Assessment of pH and Degree of Surface Roughness of Enamel When Etched with Five Commercially Available Etchants: An In Vitro Study. The Journal of Contemporary Dental Practice, 23(2), 181–185.
[28] Roy, J. R., Janaki, C. S., Jayaraman, S., Veeraraghavan, V. P., Periyasamy, V., Balaji, T., Vijayamalathi, M., Bhuvaneswari, P., & Swetha, P., 2023, Hypoglycemic Potential of Carica papaya in Liver Is Mediated through IRS-2/PI3K/SREBP-1c/GLUT2 Signaling in High-Fat-Diet-Induced Type-2 Diabetic Male Rats. Toxics, 11(3), 240. https://doi.org/10.3390/toxics11030240.
[29] Motshakeri, M., Ebrahimi, M., Goh, Y. M., Othman, H. H., Hair-Bejo, M., & Mohamed, S. (2014). Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model. Evidence-Based Complementary and alternative medicine : eCAM, 2014, 379407. https://doi.org/10.1155/2014/379407.