References:
[1] Ma, Q., Li, Y., Li, P., Wang, M., Wang, J., Tang, Z., Wang, T., Luo, L., Wang, C., Wang, T., & Zhao, B., 2019, Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & pharmacotherapy, 117, 109138. https://doi.org/10.1016/j.biopha.2019.109138.
[2] Roep, B. O., Thomaidou, S., van Tienhoven, R., & Zaldumbide, A., 2021, Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature reviews. Endocrinology, 17(3), 150–161. https://doi.org/10.1038/s41574-020-00443-4.
[3] Rebecca Roy, J., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., Veeraraghavan, V. P., Krishnamoorthy, K., & Prasad, M., 2023, Carica Papaya Reduces High Fat Diet and Streptozotocin-Induced Development of Inflammation in Adipocyte via IL-1β/IL-6/TNF-α Mediated Signaling Mechanisms in Type-2 Diabetic Rats. Current Issues in Molecular Biology, 45(2), 852–884. https://doi.org/10.3390/cimb45020056.
[4] Kandanur, S. G. S., Tamang, N., Golakoti, N. R., & Nanduri, S., 2019, Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. European Journal of Medicinal Chemistry, 176, 513–533. https://doi.org/10.1016/j.ejmech.2019.05.022.
[5] Jayakumar, T., Hsieh, C. Y., Lee, J. J., & Sheu, J. R., 2013, Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. Evidence-Based Complementary and Alternative Medicine : eCAM, 2013, 846740. https://doi.org/10.1155/2013/846740.
[6] Premanath, R., Nanjaiah, L., 2015, Antidiabetic and antioxidant potential of Andrographis paniculata Nees. leaf ethanol extract in streptozotocin induced diabetic rats. Journal of Applied Pharmaceutical Science, 5:069-076. 10.7324/JAPS.2015.50113.
[7] Tan, W. S. D., Liao, W., Zhou, S., & Wong, W. S. F., 2017, Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochemical Pharmacology, 139, 71–81. https://doi.org/10.1016/j.bcp.2017.03.024.
[8] Vishaka, S., Sridevi, G., & Selvaraj, J., 2022, An in vitro analysis on the antioxidant and anti-diabetic properties of Kaempferia galanga rhizome using different solvent systems. Journal of Advanced Pharmaceutical Technology & Research, 13(2), S505–S509. https://doi.org/10.4103/japtr.japtr_189_22.
[9] Prakasam, N.V., Devi, R.G., Selvaraj, J., 2022, In-vitro Antidiabetic on leaf extracts of Mimosa pudica and Euphorbia hirta-A Comparative Study. Research Journal of Pharmacy and Technology, 15:5459-5463. 10.52711/0974-360X.2022.00920.
[10] Kaddour, S.M., Arrar, L., Baghiani, A., 2020, Anti-Inflammatory Potential Evaluation (In-Vitro and In-Vivo) of Arthrophytum scoparium Aerial Part. JDDT, 10: 213-218. 10.22270/jddt.v10i5.4409.
[11] Neralla, M., M, H., Preethi, A., Selvakumar, S. C., & Sekar, D., 2024, Expression levels of microRNA-7110 in oral squamous cell carcinoma. Minerva dental and oral science, 73(3), 155–160. https://doi.org/10.23736/S2724-6329.23.04801-5.
[12] Nugroho, A. E., Andrie, M., Warditiani, N. K., Siswanto, E., Pramono, S., & Lukitaningsih, E., 2012, Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian Journal of Pharmacology, 44(3), 377–381. https://doi.org/10.4103/0253-7613.96343.
[13] Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Veeraraghavan, V. P., 2022, Carica papaya Reduces Muscle Insulin Resistance via IR/GLUT4 Mediated Signaling Mechanisms in High Fat Diet and Streptozotocin-Induced Type-2 Diabetic Rats. Antioxidants (Basel, Switzerland), 11(10), 2081. https://doi.org/10.3390/antiox11102081.
[14] Roy, J. R., Janaki, C. S., Jayaraman, S., Veeraraghavan, V. P., Periyasamy, V., Balaji, T., Vijayamalathi, M., Bhuvaneswari, P., & Swetha, P., 2023,Hypoglycemic Potential of Carica papaya in Liver Is Mediated through IRS-2/PI3K/SREBP-1c/GLUT2 Signaling in High-Fat-Diet-Induced Type-2 Diabetic Male Rats. Toxics, 11(3), 240. https://doi.org/10.3390/toxics11030240.
[15] Salehi, B., Ata, A., V Anil Kumar, N., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Abdulmajid Ayatollahi, S., Tsouh Fokou, P. V., Kobarfard, F., Amiruddin Zakaria, Z., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W. N., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., Ostrander, E. A., Sharifi-Rad, J., 2019, Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551.
[16] Mwakalukwa, R., Amen, Y., Nagata, M., & Shimizu, K., 2020, Postprandial Hyperglycemia Lowering Effect of the Isolated Compounds from Olive Mill Wastes - An Inhibitory Activity and Kinetics Studies on α-Glucosidase and α-Amylase Enzymes. ACS omega, 5(32), 20070–20079. https://doi.org/10.1021/acsomega.0c01622.
[17] Indu, S., Vijayalakshmi, P., Selvaraj, J., & Rajalakshmi, M., 2021, Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules (Basel, Switzerland), 26(22), 6812. https://doi.org/10.3390/molecules26226812.
[18] Ramalingam, K., Yadalam, P. K., Ramani, P., Krishna, M., Hafedh, S., Badnjević, A., Cervino, G., & Minervini, G., 2024, Light gradient boosting-based prediction of quality of life among oral cancer-treated patients. BMC Oral Health, 24(1), 349. https://doi.org/10.1186/s12903-024-04050-x.
[19] Dirir, A. M., Daou, M., Yousef, A. F., & Yousef, L. F., 2022, A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Peviews : Proceedings of the Phytochemical Society of Europe, 21(4), 1049–1079. https://doi.org/10.1007/s11101-021-09773-1.
[20] Kashtoh, H., & Baek, K. H., 2022, Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants (Basel, Switzerland), 11(20), 2722. https://doi.org/10.3390/plants11202722.
[21] American Diabetes Association., 2020, Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care, 43(Suppl 1), S98–S110. https://doi.org/10.2337/dc20-S009.
[22] Somtimuang, C., Olatunji, O. J., & Ovatlarnporn, C., 2018, Evaluation of In Vitro α-Amylase and α-Glucosidase Inhibitory Potentials of 14 Medicinal Plants Constituted in Thai Folk Antidiabetic Formularies. Chemistry & Biodiversity, 15(4), e1800025. https://doi.org/10.1002/cbdv.201800025.
[23] Kurutas E. B., 2016, The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal, 15(1), 71. https://doi.org/10.1186/s12937-016-0186-5.
[24] Salve, P., Vinchurkar, A., Raut, R., Chondekar, R., Lakkakula, J., Roy, A., Hossain, M. J., Alghamdi, S., Almehmadi, M., Abdulaziz, O., Allahyani, M., Dablool, A. S., Sarker, M. M. R., & Nur Azlina, M. F., 2022, An Evaluation of Antimicrobial, Anticancer, Anti-Inflammatory and Antioxidant Activities of Silver Nanoparticles Synthesized from Leaf Extract of Madhuca longifolia Utilizing Quantitative and Qualitative Methods. Molecules (Basel, Switzerland), 27(19), 6404. https://doi.org/10.3390/molecules27196404.
[25] Dharmadeva, S., Galgamuwa, L. S., Prasadinie, C., & Kumarasinghe, N., 2018, In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu, 39(4), 239–242. https://doi.org/10.4103/ayu.AYU_27_18.
[26] Dsouza, M.R., Athoibi, S., Prabha, S., 2020, Pharmacognostical Investigation of Andrographis paniculata (Green Chiretta) and Crystallization of the Bioactive component Andrographolide. Int. J. Pharmtech Res. 13: 40-50. 10.20902/ijptr.2019.130207.
[27] Harsha, L., & Subramanian, A. K., 02022, Comparative Assessment of pH and Degree of Surface Roughness of Enamel When Etched with Five Commercially Available Etchants: An In Vitro Study. The Journal of Contemporary Dental Practice, 23(2), 181–185.
[28] Roy, J. R., Janaki, C. S., Jayaraman, S., Veeraraghavan, V. P., Periyasamy, V., Balaji, T., Vijayamalathi, M., Bhuvaneswari, P., & Swetha, P., 2023, Hypoglycemic Potential of Carica papaya in Liver Is Mediated through IRS-2/PI3K/SREBP-1c/GLUT2 Signaling in High-Fat-Diet-Induced Type-2 Diabetic Male Rats. Toxics, 11(3), 240. https://doi.org/10.3390/toxics11030240.
[29] Motshakeri, M., Ebrahimi, M., Goh, Y. M., Othman, H. H., Hair-Bejo, M., & Mohamed, S. (2014). Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model. Evidence-Based Complementary and alternative medicine : eCAM, 2014, 379407. https://doi.org/10.1155/2014/379407.