Anti-diabetic Potential Mechanisms of Phytomedicines – A Review

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.03.Art009

Authors : Sridevi Gopathy, Selvaraj Jayaraman, A. Arockya Stafi, S. Srividya

Abstract:

Diabetic mellitus is an endocrine disorder characterized by hyperglycemia, polyphagia, polyuria, and polydipsia. In this condition, the cells and tissues are unable to utilize glucose for energy due to inadequate insulin secretion. The complications of the disease include diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy that affect the eyes, nerves, kidneys and stroke, renal failure, and heart attacks are other serious consequences of diabetes. The conventional modern medicines for treatment are oral hypoglycemic drugs, sulfonylureas and glinides, metformin and thiazolidinedione, dipeptidyl peptidase-4 (DPP4) inhibitors, and injections such as GLP-1 agonists. Due to the presence of a lot of side effects, the modern world is now turning to bioactive chemical components synthesized from plants. Today, drugs derived from herbs or plants are widely used because of the exploitation of specific compounds and their therapeutic actions. Various phytochemicals have notable and significant mechanisms for reducing the blood glucose level. These natural agents can have a protective and therapeutic effect on diabetes mellitus through cellular mechanisms such as the regeneration of pancreatic β cells, antioxidative stress, and intracellular signalling transduction pathways. The present study aims to review the mechanisms of various phytochemicals that play a role in antidiabetic activity. The possible mechanisms by which the antidiabetic herbs act are α-glucosidase inhibitors, PPAR activators, free radical scavengers, HMG Co suppressors, regenerators of beta cells, and cause an increase in insulin secretion and glycogen synthesis in glycemic control.

References:

[1]    American Diabetes Association, 2012, Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 36(Supplement_1), S67–S74. https://doi.org/10.2337/dc13-S067

[2]    International Diabetes Federation, 2021, IDF Diabetes Atlas, 10th edition. Brussels, Belgium: https://www.diabetesatlas.org/.

[3]    Kakkar, R., 2016, Rising burden of Diabetes-Public Health Challenges & way out. Nepal Journal of Epidemiology, 6(2), 557–559. https://doi.org/10.3126/nje.v6i2.15160

[4]    Ali, M. K., Narayan, K. M., & Tandon, N. 2010, Diabetes & coronary heart disease: current perspectives. The Indian journal of medical research, 132(5), 584–597.

[5]    Singh, N., Armstrong, D. G., & Lipsky, B. A., 2005, Preventing foot ulcers in patients with diabetes. JAMA, 293(2), 217. https://doi.org/10.1001/jama.293.2.217

[6]    Levetan, C., 2007, Oral antidiabetic agents in type 2 diabetes. Current Medical Research and Opinion, 23(4), 945–952. https://doi.org/10.1185/030079907x178766

[7]    Inzucchi, S. E., 2002, Oral antihyperglycemic therapy for type 2 diabetes. JAMA, 287(3), 360. https://doi.org/10.1001/jama.287.3.360

[8]    Mendoza, N., & Silva, E. M. E., 2018,  Introduction to phytochemicals: Secondary metabolites from plants with active principles for pharmacological importance. In Phytochemicals - Source of Antioxidants and Role in Disease Prevention. InTech.http://dx.doi.org/10.5772/intechopen.78226

[9]    Vinayagam, R., Xiao, J., & Xu, B., 2017, An insight into anti-diabetic properties of dietary phytochemicals. Phytochemistry Reviews, 16(3), 535–553. https://doi.org/10.1007/s11101-017-9496-2

[10]    Singh, V. K., Umar, S., Ansari, S. A., & Iqbal, M., 2008, Gymnema sylvestre for Diabetics. Journal of Herbs, Spices & Medicinal Plants, 14(1–2), 88–106. https://doi.org/10.1080/10496470802341508

[11]    Gulab S. Thakur., 2012, Gymnema sylvestre: An Alternative Therapeutic Agent for Management of Diabetes. Journal of Applied Pharmaceutical Science, 2(12), 001-006. https://doi.org/10.7324/japs.2012.21201

[12]    Persaud, S., Al-Majed, H., Raman, A., & Jones, P., 1999, Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. Journal of Endocrinology, 163(2), 207-212. https://doi.org/10.1677/joe.0.1630207

[13]    AlAttas, S. A., Zahran, F. M., & Turkistany, S. A., 2016, Nigella sativa and its active constituent thymoquinone in oral health. Saudi Medical Journal, 37(3), 235–244. https://doi.org/10.15537/smj.2016.3.13006

[14]    Varghese, R. M., Kumar, S. A., & Selvaraj, Y., 2023, Assessment of Soft Tissue, Airway Dimension and Hyoid Bone Position in Class II Patients Treated by PowerScope Class 2 Corrector. The Journal of Contemporary Dental Practice, 24(5), 308–313. https://doi.org/10.5005/jp-journals-10024-3485

[15]    Atangwho, I. J., Ebong, P. E., Eyong, E. U., Williams, I. O., Eteng, M. U., & Egbung, G. E., 2009, Comparative chemical composition of leaves of some antidiabetic medicinal plants: Azadirachta indica, Vernonia amygdalina and Gongronema latifolium. African Journal of Biotechnology, 8(18), 4685-4689.

[16]    Djeujo, F. M., Stablum, V., Pangrazzi, E., Ragazzi, E., & Froldi, G., 2023, Luteolin and Vernodalol as Bioactive Compounds of Leaf and Root Vernonia amygdalina Extracts: Effects on α-Glucosidase, Glycation, ROS, Cell Viability, and In Silico ADMET Parameters. Pharmaceutics, 15(5), 1541. https://doi.org/10.3390/pharmaceutics15051541

[17]    Baquer, N. Z., Kumar, P., Taha, A., Kale, R., Cowsik, S., & McLean, P., 2011, Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. Journal of Biosciences, 36(2), 383–396. https://doi.org/10.1007/s12038-011-9042-0

[18]    Sowmithra Devi, S., Sundari, S.,2023, Occlusal Contact Changes With Traumatic Occlusion After Orthodontic Treatment: A Prospective Study. Journal of Advanced Oral Research. 14(2):134-142. doi:10.1177/23202068231190202

[19]    Kahramanoğlu, İ., Chen, C., Chen, J., & Wan, C., 2019, Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe vera Gel. Agronomy, 9(12), 831. https://doi.org/10.3390/agronomy9120831

[20]    Tanaka, M., Misawa, E., Ito, Y., Habara, N., Nomaguchi, K., Yamada, M., … Higuchi, R., 2006, Identification of five phytosterols from aloe vera gel as anti-diabetic compounds. Biological and Pharmaceutical Bulletin, 29(7), 1418–1422. https://doi.org/10.1248/bpb.29.1418

[21]    Kumar, D., Mitra, A., & M, M., 2011, Azadirachtolide: An anti-diabetic and hypolipidemic effects from Azadirachta indica leaves. Pharmacognosy Communications, 1(1), 78–84. https://doi.org/10.5530/pc.2011.1.5

[22]    Ponnusamy, S., Haldar, S., Mulani, F., Zinjarde, S., Thulasiram, H., & RaviKumar, A., 2015. Gedunin and Azadiradione: Human Pancreatic Alpha-Amylase Inhibiting Limonoids from Neem (Azadirachta indica) as Anti-Diabetic Agents. PLOS ONE, 10(10), e0140113. https://doi.org/10.1371/journal.pone.0140113

[23]    Aabideen, Z. U., Mumtaz, M. W., Akhtar, M. T., Raza, M. A., Mukhtar, H., Irfan, A., Saari, N., 2021, Cassia fistula Leaves; UHPLC-QTOF-MS/MS Based Metabolite Profiling and Molecular Docking Insights to Explore Bioactives Role towards Inhibition of Pancreatic Lipase. Plants, 10(7), 1334. https://doi.org/10.3390/plants10071334

[24]    Adisakwattana, S., 2017, Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients, 9(2), 163. https://doi.org/10.3390/nu9020163

[25]    Roy, J. R., Janaki, C. S., Jayaraman, S., Periyasamy, V., Balaji, T., Vijayamalathi, M., & Veeraraghavan, V. P., 2022, Carica papaya Reduces Muscle Insulin Resistance via IR/GLUT4 Mediated Signaling Mechanisms in High Fat Diet and Streptozotocin-Induced Type-2 Diabetic Rats. Antioxidants, 11(10), 2081. https://doi.org/10.3390/antiox11102081

[26]    Ansari, P., Flatt, P. R., Harriott, P., Hannan, J. M. A., & Abdel-Wahab, Y. H. A., 2021, Identification of Multiple Pancreatic and Extra-Pancreatic Pathways Underlying the Glucose-Lowering Actions of Acacia arabica Bark in Type-2 Diabetes and Isolation of Active Phytoconstituents. Plants, 10(6), 1190. https://doi.org/10.3390/plants10061190

[27]    Srinivasan, S., Sathish, G., Jayanthi, M., Muthukumaran, J., Muruganathan, U., & Ramachandran, V., 2013, Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Molecular and Cellular Biochemistry, 385(1–2), 159–168. https://doi.org/10.1007/s11010-013-1824-2

[28]    Adebanke, O., Babatunde, A., Franklyn, I., Keleeko, A., Joseph, O., & Olubanke, O., 2023, Free radical scavenging activity, pancreatic lipase and a-amylase inhibitory assessment of ethanolic leaf extract of Phyllanthus amarus. Plant Science Today, 10(2), 20–26. https://doi.org/10.14719/pst.1809

[29]    Ahmad, N., Hasan, N., Ahmad, Z., Zishan, M., & Zohrameena, S., 2016,  MOMORDICA CHARANTIA: FOR TRADITIONAL USES AND PHARMACOLOGICAL ACTIONS. Journal of Drug Delivery and Therapeutics, 6(2), 40-44. https://doi.org/10.22270/jddt.v6i2.1202

[30]    Yan, L., Vaghari-Tabari, M., Malakoti, F., Moein, S., Qujeq, D., Yousefi, B., & Asemi, Z., 2022, Quercetin: An effective polyphenol in alleviating diabetes and diabetic complications. Critical Reviews in Food Science and Nutrition, 63(28), 9163–9186. https://doi.org/10.1080/10408398.2022.2067825

[31]    Varghese, R.M., Subramanian, A.K., Maliael, M.T., 2023, PowerScope™ for Class II Malocclusions: A Systematic Review and Meta-analysis. World Journal of Dentistry,14(7):639–647

[32]    Bozkurt, O., Kocaadam-Bozkurt, B., & Yildiran, H., 2022, Effects of curcumin, a bioactive component of turmeric, on type 2 diabetes mellitus and its complications: An updated review. Food & Function, 13(23), 11999–12010. https://doi.org/10.1039/d2fo02625b

[33]    Majeed, M., Mundkur, L., Paulose, S., & Nagabhushanam, K., 2022, Novel Emblica officinalis extract containing β-glucogallin vs. metformin: A randomized, open-label, comparative efficacy study in newly diagnosed type 2 diabetes mellitus patients with dyslipidemia. Food & Function, 13(18),9523–9531. https://doi.org/10.1039/d2fo01862d

[34]    Mathiyazhagan, J., & Kodiveri Muthukaliannan, G., 2020, The role of mTOR and oral intervention of combined Zingiberofficinale Terminalia chebula  extract in type 2 diabetes rat models. Journal of Food Biochemistry, 44(7). https://doi.org/10.1111/jfbc.13250

[35]    Mahindrakar, K. V., & Rathod, V. K., 2020, Antidiabetic potential evaluation of aqueous extract of wasteSyzygium cuminiseed kernel’s byin vitroα-amylase and α-glucosidase inhibition. Preparative Biochemistry & Biotechnology, 51(6), 589–598. https://doi.org/10.1080/10826068.2020.1839908

[36]    Rasool, S., Al Meslmani, B., & Alajlani, M., 2023, Determination of hypoglycemic, hypolipidemic and nephroprotective effects of berberis calliobotrys in alloxan-induced diabetic rats. Molecules, 28(8), 3533. https://doi.org/10.3390/molecules2808353

[37]    Etsassala, N. G. E. R., Badmus, J. A., Marnewick, J. L., Egieyeh, S., Iwuoha, Emmanuel. I., Nchu, F., & Hussein, A. A., 2022, Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Plectranthus ecklonii Constituents. Antioxidants, 11(2), 378. https://doi.org/10.3390/antiox11020378

[38]    Maher, S., Choudhary, M. I., Saleem, F., Rasheed, S., Waheed, I., Halim, S. A., … Ahmad, S., 2020, Isolation of Antidiabetic Withanolides from Withania coagulans Dunal and Their In Vitro and In Silico Validation. Biology, 9(8), 197. https://doi.org/10.3390/biology9080197

[39]    Hsu, J.-H., Yang, C.-S., & Chen, J.-J., 2022, Antioxidant, Anti-α-Glucosidase, Antityrosinase, and Anti-Inflammatory Activities of Bioactive Components from Morus alba. Antioxidants, 11(11), 2222. https://doi.org/10.3390/antiox11112222

[40]    Kumar, R., Sood, P., Rana, Dr. V., & Prajapati, A. K., 2023, Combine therapy of gallic acid and allicin in management of diabetes. Journal for Research in Applied Sciences and Biotechnology, 2(3), 91–99. https://doi.org/10.55544/jrasb.2.3.12