Molecular Basis behind the Neuroprotective Potential of Beta Sitosterol in Lipopolysaccharide-Induced Wistar Albino Rats

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.03.Art007

Authors : Selvaraj Jayaraman, Vishnu Priya Veeraraghavan, Selvaraj Jayaraman, Ponnulakshmi Rajagopal, Chella Perumal Palanisamy, S. Prathiba, R. Jayasree, Mahesh Kumar

Abstract:

Neurodegenerative disorders are on the rise globally. β-Sitosterol shows potential therapeutic benefits, but its neuroprotective mechanisms remain largely unexplored. This study aimed to assess the neuroprotective effects of β-Sitosterol on pro-inflammatory (NFκB) and antioxidant (NRF-2/KEAP-1) pathways in an in vivo in LPS-induced neurodegeneration model in albino rats. The rats were divided into four groups: normal control, LPS-induced, LPS-induced treated with β-Sitosterol (20 mg/kg/day for 4 weeks), and normal treated with β-Sitosterol. Neurotransmitters (dopamine and serotonin) and antioxidant enzymes (GSH and CAT) were measured by ELISA, and gene expression of NFκB, NRF-2, KEAP-1, IL-6, and IL-18 was assessed by Real-Time RT-PCR. Histopathology of brain tissues was performed. LPS induction significantly decreased neurotransmitters and antioxidant enzymes and upregulated NFκB while downregulating NRF-2 and KEAP-1 mRNA expression. β-Sitosterol treatment normalized these levels (p<0.05) and reduced hyperchromatic pyknotic changes in neuronal nuclei observed in LPS-induced rats. Normal rats treated with β-Sitosterol showed no significant alterations, indicating its safety. These findings suggest β-Sitosterol can reduce neuroinflammation by modulating antioxidant signaling, providing a potential therapeutic approach for neurodegenerative diseases.

References:

[1].   Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T., 2009, Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Current Neuropharmacology, 7(1), 65–74. https://doi.org/10.2174/157015909787602823.

[2].   S, D. P. A., Solete, P., Jeevanandan, G., Syed, A. A., Almahdi, S., Alzhrani, M., Maganur, P. C., & Vishwanathaiah, S., 2023, Effect of Various Irrigant Activation Methods and Its Penetration in the Apical Third of Root Canal-In Vitro Study. European Journal of dentistry, 17(1), 57–61. https://doi.org/10.1055/s-0041-1742122.

[3].   Prathipa S., Shanmuga, S., Geetha Rani, K.S., Krithika, Chandrasekar., Ramajayam Govindan., Mahesh Kumar, P., Jaideep Mahendra & Ponnulakshmi, R., 2023, Phytosterols and its Neuroprotective Effect – An Updated Review. European Chemical Bulletin.j. DOI:10.48047/ecb/2023.12.si4.701.

[4].   Kaspar, J. W., Niture, S. K., & Jaiswal, A. K., 2009, Nrf2:INrf2 (Keap1) Signaling in Oxidative Stress. Free Radical Biology & Medicine, 47(9), 1304–1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035.

[5].   Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., Fu, Y., & Zhu, L., 2019, Neuroinflammation Induced by Lipopolysaccharide Causes Cognitive Impairment in Mice. Scientific Reports, 9(1), 5790. https://doi.org/10.1038/s41598-019-42286-8.

[6].   Gao, W., Guo, L., Yang, Y., Wang, Y., Xia, S., Gong, H., Zhang, B. K., & Yan, M. , 2022,  Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Frontiers in Cell and Developmental Biology, 9, 809952. https://doi.org/10.3389/fcell.2021.809952.

[7].   Juárez Olguín, H., Calderón Guzmán, D., Hernández García, E., & Barragán Mejía, G. , 2016, The Role of Dopamine and its Dysfunction as a Consequence of Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2016, 9730467. https://doi.org/10.1155/2016/9730467

[8].   Yin, Y., Liu, X., Liu, J., Cai, E., Zhao, Y., Li, H., Zhang, L., Li, P., & Gao, Y., 2018, The Effect of Beta-Sitosterol and its Derivatives on Depression by the Modification of 5-HT, DA and GABA-Ergic Systems in Mice. RSC Advances, 8(2), 671–680. https://doi.org/10.1039/c7ra11364a

[9].   Sedlak, J., & Lindsay, R.H., 1968, Analytical Biochemistry,25, 192-205.

[10].  Takahara, S., Hamilton, H.B., Neel, J.V., Kobara,T.Y., Ogura, Y.,  & Nishimura, E.T., 1960, Journal of Clinical Investigation, 39, 610-619.

[11].  Vishwanathaiah, S., Maganur, P. C., Manoharan, V., Jeevanandan, G., Hakami, Z., Jafer, M. A., Khanagar, S., & Patil, S., 2022, Does Social Media have any Influence during the COVID-19 Pandemic? An Update. The Journal of Contemporary Dental Practice, 23(3), 327–330.

[12].  Lee, D. Y., Song, M. Y., & Kim, E. H., 2021, Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals. Antioxidants (Basel, Switzerland), 10(5), 743. https://doi.org/10.3390/antiox10050743

[13].  Babu, S., Krishnan, M., Rajagopal, P., Periyasamy, V., Veeraraghavan, V., Govindan, R., & Jayaraman, S., 2020, Beta-sitosterol Attenuates Insulin Resistance in Adipose Tissue via IRS-1/Akt Mediated Insulin Signaling in High Fat Diet and Sucrose Induced Type-2 Diabetic Rats. European Journal of Pharmacology, 873, 173004. https://doi.org/10.1016/j.ejphar.2020.173004

[14].  Saha, S., Buttari, B., Panieri, E., Profumo, E., & Saso, L., 2020, An Overview of Nrf2 Signaling Pathway and its Role in Inflammation. Molecules (Basel, Switzerland), 25(22), 5474. https://doi.org/10.3390/molecules25225474.

[15].  Sun, Y., Gao, L., Hou, W., & Wu, J., 2020, β-Sitosterol Alleviates Inflammatory Response via Inhibiting the Activation of ERK/p38 and NF-κB Pathways in LPS-Exposed BV2 Cells. BioMed Research International, 2020, 7532306. https://doi.org/10.1155/2020/7532306

[16].  Francois, A., Terro, F, Janet, T., Rioux Bilan, A., Paccalin, M., & Page, G.,2013, Involvement of Interleukin-1Beta in the Autophagic Process of Microglia: Relevance to Alzheimer’s Disease, Journal of Neuroinflammation,10,151.

[17].  Mathew, M. G., Jeevanandan, G., Vishwanathaiah, S., Hamzi, K. A., Depsh, M. A. N., & Maganur, P. C., 2022, Parental and Child Outlook on the Impact of ECC on Oral Health-related Quality of Life: A Prospective Interventional Study. The Journal of Contemporary Dental Practice, 23(9), 877–882. https://doi.org/10.5005/jp-journals-10024-3397.

[18].  Teleanu, R. I., Niculescu, A. G., Roza, E., Vladâcenco, O., Grumezescu, A. M., & Teleanu, D. M., 2022, Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. International Journal of Molecular Sciences, 23(11), 5954. https://doi.org/10.3390/ijms23115954

[19].  Tagliamonte, A., Biggio, G., Vargiu, L., & Gessa, G. L., 1973, Free Tryptophan in Serum Controls Brain Tryptophan Level and Serotonin Synthesis. Life sciences. Pt. 2: Biochemistry, General and Molecular Biology, 12(6), 277–287. https://doi.org/10.1016/0024-3205(73)90361-5.

[20].  Babu, S., & Jayaraman, S., 2020, An Update on β-sitosterol: A Potential Herbal Nutraceutical for Diabetic Management. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702.

[21].  Jayaraman, S., Devarajan, N., Rajagopal, P., Babu, S., Ganesan, S. K., Veeraraghavan, V. P., Palanisamy, C. P., Cui, B., Periyasamy, V., & Chandrasekar, K. (2021). β-Sitosterol Circumvents Obesity Induced Inflammation and Insulin Resistance by Down-Regulating IKKβ/NF-κB and JNK Signaling Pathway in Adipocytes of Type 2 Diabetic Rats. Molecules (Basel, Switzerland), 26(7), 2101. https://doi.org/10.3390/molecules26072101