Studies on the Molecular Interaction of Colchicine with Antioxidant Signaling Molecules and Identification Antidiabetic Activity: Evidences through In-silico Analysis

Download Article

DOI: 10.21522/TIJPH.2013.SE.24.03.Art005

Authors : Selvaraj Jayaraman, Vishnu Priya Veeraraghavan, Selvaraj Jayaraman, Ponnulakshmi Rajagopal, Heera M. J, Manju P, Kritika C, Sureka Varalakshmi V, Chella Perumal Palanisamy, Ramajayam Govindan

Abstract:

Colchicine, a naturally occurring alkaloid, has garnered attention for its potential anti-diabetic properties. This study delves into the molecular interactions between colchicine and antioxidant signaling molecules, aiming to uncover its therapeutic potential in managing diabetes. The primary aim of this research is to investigate the intricate molecular interactions between colchicine and key antioxidant signaling molecules. Additionally, through in-silico analysis, the study seeks to identify the antidiabetic activity of colchine. In this study, molecular docking simulations were employed to explore the binding affinities and interactions of colchicine with antioxidant signaling molecules like superoxide dismutase, catalase, glutathione peroxidase, Peroxiredoxin and Hemeoxygenase. The computational analysis was carried out using state-of-the-art software tools, allowing for a comprehensive assessment of potential binding energies. Furthermore, an in-silico analysis was conducted to predict colchicine’s ability to modulate key pathways related to diabetes. The findings reveal that colchicine exhibits strong binding affinities with antioxidant enzymes, suggesting its potential as an antioxidant agent. This study provides valuable insight into the molecular interactions between colchicine and antioxidant signaling molecules. The promising binding affinities and potential antidiabetic activity identified through in-silico analysis highlight colchicine as a candidate for further investigation as a therapeutic agent for diabetes. Further in vitro and in vivo experiments are warranted to validate these in-silico finding and unlock the full potential of colchicine in diabetes management.

References:

[1] Naris, S., 2022, Significant Role of Free Radicals in Diabetes Mellitus. Oxidants and Antioxidants in Medical Science. Oxidants and Antioxidants in Medical Science,  11(8), 1-2.
[2] Drummond, G. R., Selemidis, S., Griendling K., & Sobey, C. G., 2011, Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews Drug Discovery, 10(6),453–471. doi: 10.1038/nrd3403. 
[3] Johansen, J., Harris, A. K., Rychly, D. J., & Ergul, A., 2005, Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovascular Diabetology,4(1), p. 5. doi: 10.1186/1475-2840-4-5. 
[4] Pacher, P., Beckman, J. S., & Liaudet, L., 2007, Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87(1),315–424. doi: 10.1152/physrev.00029.2006. 
[5] Zhang, D. X., & Gutterman, D.D., 2007, Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. American Journal of Physiology-Heart and Circulatory Physiology, 292(5), H2023–H2031. doi: 10.1152/ajpheart.01283.2006. 
[6] Goldstein, B.J., Mahadev, K., Wu, X., Zhu, L., & Motoshima, H., 2005, Role of Insulin-Induced Reactive Oxygen Species in the Insulin Signaling Pathway. Antioxid Redox Signal, 7(7-8), 1021–1031. doi: 10.1089/ars.2005.7.1021.
[7] Harsha, L., & Subramanian, A. K., 02022, Comparative Assessment of pH and Degree of Surface Roughness of Enamel When Etched with Five Commercially Available Etchants: An In Vitro Study. The Journal of Contemporary Dental Practice, 23(2), 181–185.
[8] Nrf2. 2021, The IUPHAR/BPS Guide to Pharmacology. https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2605&familyId=694&familyType=TF. 
[9] He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X., 2017, Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cellular Physiology and Biochemistry, 44(2),532-553. doi: 10.1159/000485089.91.
[10] Antonyuk, S.V., Strange, R.W., Marklund, S.L., & Hasnain, S.S., 2009, The Structure of Human Extracellular Copper-Zinc Superoxide Dismutase at 1.7 A Resolution: Insights into Heparin and Collagen Binding.  Journal of Molecular Biology, 388, 310. PubMed: 19289127. DOI: https://doi.org/10.1016/j.jmb.2009.03.026.
[11] Eletsky, A., Pulavarthi, S.V.S.R.K., Lee, D., Kohan, E., Janjua, H., Xiao, R., Acton, T.B., Everette, J.K., Montelione, G.T., & Szyperski, T., 2012, Solution NMR Structure of the DNA-Binding Domain of Human NF-E2-Related Factor 2, Northeast Structural Genomics onsortium(NESG)TargetHR3520O. https://doi.org/10.2210/pdb2LZ1/pdb.
[12] Kavanagh, K.L., Johansson, C., Smee, C., Gileadi, O., Von Delft, F., & Oppermann,U., 2005, Crystal structure of the selenocysteine to glycine mutant of human glutathione peroxidase 1. https://doi.org/10.2210/pdb2F8A/pdb.
[13] Pilka, E.S., Kavanagh, K.L.,  Cooper, C., von Delft, F., Sundstrom, M., Arrowsmith, C.A., Weigelt, J., Edwards, A., & Oppermann, U., 2007, Crystal structure of human peroxiredoxin 4 (thioredoxin peroxidase). https://doi.org/10.2210/pdb2PN8/pdb
[14] Neralla, M., M, H., Preethi, A., Selvakumar, S. C., & Sekar, D., 2024, Expression levels of microRNA-7110 in oral squamous cell carcinoma. Minerva dental and oral science, 73(3), 155–160. https://doi.org/10.23736/S2724-6329.23.04801-5.
[15] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, & D. S. and Olson, A. J., 2009, Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. Journal of Computational Chemistry,16, 2785-2791.
[16] Smith, J. A., & Park, S., 2021, Superoxide Dismutase 1 (SOD1). In Handbook of Amyotrophic Lateral Sclerosis, (pp. 19-31), Springer.
[17] Younus, H., 2018, Therapeutic potentials of superoxide dismutase. International Journal of Health Sciences (Qassim). 12(3): 88-93.
[18] Lei, X.G., Zhu, J.H., Cheng, W.H., Bao, Y., Ho, Y.S., Reddi, A.R., Holmgren, A., & Arnér, E.S., 2016, Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev, 96:307–364. DOI: 10.1152/physrev.00010.2014. 
[19] Lewis, P., Stefanovic, N., Pete, J., Calkin, A.C., Giunti, S., Thallasbonke, V., Jandeleitdahm, K.A., Allen, T.J., Kola, I., & Cooper, M.E., 2007, Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E–deficient mice. Circulation, 115,2178–2187. doi: 10.1161/CIRCULATIONAHA.106.664250. 
[20] Ramalingam, K., Yadalam, P. K., Ramani, P., Krishna, M., Hafedh, S., Badnjević, A., Cervino, G., & Minervini, G., 2024, Light gradient boosting-based prediction of quality of life among oral cancer-treated patients. BMC Oral Health, 24(1), 349. https://doi.org/10.1186/s12903-024-04050-x. 
[21] Yamamoto, T., Suzuki, T., Kobayashi, A., Wakabayashi, J., Maher, J., Motohashi, H., & Yamamoto, M., 2008, Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Molecular and Cellular Biology, 28,2758–2770. doi: 10.1128/MCB.01704-07. 
[22] Stancill, J.S., & Corbett, J.A., 2021, The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage.Front Endocrinol (Lausanne),12,718235. doi: 10.3389/fendo.2021.718235.  
[23] Elmarakby, A.A., Faulkner, J., Baban, B., & Sullivan, J.C., 2012, Induction of Hemeoxygenase-1 Reduces Renal Oxidative Stress and Inflammation in Diabetic Spontaneously Hypertensive Rats. International Journal of Hypertension, 957235. doi:10.1155/2012/957235. 
[24] Elmarakby, A.A., Faulkner, J., Baban, B., Saleh, M.A., & Sullivan, J.C., 2012, Induction of hemeoxygenase-1 reduces glomerular injury and apoptosis in diabetic spontaneously hypertensive rats. American Journal of Physiology-Renal Physiology, 302(7), F791–F800. doi: 10.1152/ajprenal.00472.2011: 10.1152/ajprenal.00472.2011.