References:
[1] Roden M., & Shulman G.I., 2019, The integrative biology of type 2 diabetes. Nature. 576:51–60. doi: 10.1038/s41586-019-1797-8.
[2] Mali, A. V., Bhise, S. S., Hegde, M. V., & Katyare, S. S., 2016, Altered Erythrocyte Glycolytic Enzyme Activities in Type-II Diabetes. Indian J Clin Biochem. 2016 Jul; 31[3]: 321–325. PMID: 27382204. doi: 10.1007/s12291-015-0529-6.
[3] Rabbani, N., Xue, M., & Thornalley, P. J., 2022, Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis—Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. doi: 10.3390/ijms23042165.
[4] Gordin, D., Shah, H., Shinjo, T., Louis, R. S., Qi, W., Park, K., Paniagua, S. M., Pober, D. M., Wu, I., Bahnam, V., Brissett, M. J., Tinsley, L. J., Dreyfuss, J. M., Pan, H., Dong, Y., Niewczas, M. A., Amenta, P., Sadowski, T., Kannt, A., Keenan, H. A., & King, G. L., 2019, Characterization of Glycolytic Enzymes and Pyruvate Kinase M2 in Type 1 and 2 Diabetic Nephropathy. Diabetes Care. Jul; 42[7]: 1263–1273. PMID: 31076418. doi: 10.2337/dc18-2585.
[5] Guo, X., Li, H., Xu, H., Woo, S., Dong, H., Lu, F., Lange, A. J., Wu, C., 2012, Glycolysis in the control of blood glucose homeostasis. Acta Pharmaceutica Sinica B Volume 2, Issue 4, Pages 358-367. https://doi.org/10.1016/j.apsb.2012.06.002.
[6] Haythorne, H., Rohm, M., Bunt, M. V. D., Brereton, M. F., Tarasov, A. I., Blacker, T. S., Sachse, G., Santos, M. S. D., Exposito, R. T., Davis, S., Baba, O., Fischer, R., Duchen, M. R., Rorsman, P., MacRae, J. I., & Ashcroft, F. M., 2019, Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells, 2019. https://doi.org/10.1038/s41467-019-10189-x.
[7] Liu, Q. J., Yuan, W., Yang, P., Liu Q. J., Yuan, W., Yang, P., & Shao, C., 2023, Role of glycolysis in diabetic atherosclerosis. World J Diabetes 14[10]: 1478-1492. DOI: 10.4239/wjd.v14.i10.1478. PMID: 37970130.
[8] Haythorne, E., Lloyd, M., Tickle, J. W., Tarasov, A. I., Sandbrink, J., Portillo, I., Exposito, R. T., Sachse, G, Cyranka, M., Rohm, R., Rorsman, P., McCullagh, J., & Ashcroft, F. M., 2022, Altered glycolysis triggers impaired mitochondrial metabolism and mTORC1 activation in diabetic β-cells. Nature communications. https://doi.org/10.1038/s41467-022-34095-x.
[9] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J., 2009, Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J. Computational Chemistry 2009, 16: 2785-91.
[10] Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M., 2011, Molecular Docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011 Jun 1; 7[2]: 146–157. doi: 10.2174/157340911795677602. PMID: 21534921
[11] Varghese, R. M., Kumar, S. A., & Selvaraj, Y., 2023, Assessment of Soft Tissue, Airway Dimension and Hyoid Bone Position in Class II Patients Treated by PowerScope Class 2 Corrector. The Journal of Contemporary Dental Practice, 24(5), 308–313. https://doi.org/10.5005/jp-journals-10024-3485.
[12] Iizuka, K., 2023, Recent Progress on Fructose Metabolism—Chrebp, Fructolysis, and Polyol Pathway. Nutrients 2023, 15[7], 1778; https://doi.org/10.3390/nu15071778.
[13] Pirovich, D. B., Da’dara, A. A., & Skelly, P. J., 2021, Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci. 2021; 8: 719678. PMID: 34458323. doi: 10.3389/fmolb.2021.719678.
[14] Varghese, R.M., Subramanian, A.K., Maliael, M.T., 2023, PowerScope™ for Class II Malocclusions: A Systematic Review and Meta-analysis. World Journal of Dentistry,14(7):639–647.
[15] Hu, H., Zhao, M., Li, Z., Nie, H., He, J., Chen, Z., Yuan, J., Guo, H., Zhang, X., Yang, H., Wu, T., & He, M., 2022, Plasma miR-193b-3p Is Elevated in Type 2 Diabetes and Could Impair Glucose Metabolism. Front Endocrinol [Lausanne]. 2022; 13: 814347. PMID: 35712251. doi: 10.3389/fendo.2022.814347.
[16] Lazarev, V. F., Guzhova, I. V., & Margulis, B. A., 2020, Glyceraldehyde-3-phosphate Dehydrogenase Is a Multifaceted Therapeutic Target. Pharmaceutics 2020, 12[5], 416; https://doi.org/10.3390/pharmaceutics12050416.
[17] Sowmithra Devi, S., Sundari, S.,2023, Occlusal Contact Changes With Traumatic Occlusion After Orthodontic Treatment: A Prospective Study. Journal of Advanced Oral Research. 14(2):134-142. doi:10.1177/23202068231190202.
[18] Kanwar, M., & Kowluru, R. A., 2009, Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy. Diabetes. 2009 Jan;58[1]:227-34. doi: 10.2337/db08-1025. PMCID: PMC2606877.
[19] Bouterse, S. M., Mohammad, G., & Kowluru, R. A., 2010, Glyceraldehyde-3-Phosphate Dehydrogenase in Retinal Microvasculature: Implications for the Development and Progression of Diabetic Retinopathy. Retinal Cell Biology.
[20] Didiasova, M., Schaefer, L., & Wygrecka, M., 2019, When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments. Cell Dev. Biol., 26 April 2019. Molecular and Cellular Pathology, Volume 7 - 2019 | https://doi.org/10.3389/fcell.2019.00061
[21] Xie, J., Du, R., Li , Q., & Li, L., 2024, The relationship between neuron-specific enolase, high sensitivity C reactive protein, and diabetic peripheral neuropathy in Chinese patients with type 2 diabetes: A prospective nested case–control analysis. Volume 44, Pages 190-199.
[22] Rajala, A., Soni, K., & Rajala, R. V. S., 2020, Metabolic and Non-metabolic Roles of Pyruvate Kinase M2 Isoform in Diabetic Retinopathy. Scientific Reports volume 10, Article number: 7456.
[23] Tu, C., Wang, L., & Wei, L., 2022, The Role of PKM2 in Diabetic Microangiopathy. Diabetes Metab Syndr Obes. 2022; 15: 1405–1412. PMID: 35548702. doi: 10.2147/DMSO.S366403.
[24] Lee, I. K., 2014, The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity. Diabetes & Metabolism Journal 2014;38[3]:181-186. DOI: https://doi.org/10.4093/dmj.2014.38.3.181.
[25] Park, Y. S., Han, J. H., Park, J. H., Choi, J. S., Kim, S. H., & Kim, H. S., 2023, Pyruvate Kinase M2: A New Biomarker for the Early Detection of Diabetes-Induced Nephropathy. Int. J. Mol. Sci. 24[3],2683; https://doi.org/10.3390/ijms24032683.