An In-Vitro Comparative Evaluation of Microleakage Beneath Metal Orthodontic Brackets when Bonded using Conventional and Titanium Dioxide Nanoparticle Infiltrated Orthodontic Adhesive Resin
Abstract:
The objective of this present study was to evaluate and compare the microleakage underneath metal orthodontic brackets when bonded with conventional and Titanium dioxide nanoparticle-infiltrated orthodontic adhesive. Ten human caries-free premolars were extracted atraumatically for orthodontics purposes and were randomly allotted into two groups, Group 1: Conventional orthodontic adhesive resin- An acid-etching adhesive system: Enlight composite (ORMCO) and Group 2: An Experimental acid-etching orthodontic adhesive system that was infiltered with Titanium dioxide. An orthodontic adhesive containing 1% nanoparticle was prepared. The metal brackets were bonded to the teeth using the adhesive group to which they belonged. All specimens underwent thermocycling in deionized water for 1000 cycles with a dwell time of 30 seconds and a transfer time of 0 seconds after being stored at 37°C for four weeks in distilled water. The next step involved 24 hours of submersion in a 0.5% basic fuchsin solution. With a low-speed diamond saw, four parallel bucco-lingual longitudinal sections were cut through the occlusal surface. Two calibrated researchers who were blindfolded were examined with a stereomicroscope at a magnification of 16x. Every section's incisal and gingival margins were measured between the bracket-adhesive and adhesive-enamel interfaces. The collected data were tabulated, and the Shapiro-Wilk test for normality was done. At the enamel adhesive interface and the bracket adhesive interface, brackets bonded with the experimental TiO2 infiltrated orthodontic adhesive resin had higher mean microleakage scores than brackets bonded with conventional composite. However, this difference was only statistically significant at the enamel adhesive interface (p > 0.05).References:
[1].
Sruthi, M. A., Gurunathan, D., 2022,
An Evidence-Based Classification on the Location of White Spot Lesions in
Primary Teeth: A Pilot Study. World Journal of Dentistry. Apr
11;13(3):261-5. https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2044
[2].
Verma, P., Jain, R. K., 2022. Visual
Assessment of Extent of White Spot Lesions in Subjects Treated with Fixed
Orthodontic Appliances: A Retrospective Study. World Journal of Dentistry.
May;13(3):246. https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2042
[3].
Sunitha, C.,
Kailasam, V., Padmanabhan, S., Chitharanjan, A. B., 2011, Bisphenol A Release
From an Orthodontic Adhesive and Its Correlation with the Degree of Conversion
on Varying Light-Curing Tip Distances. Am J Orthod Dentofacial Orthop, 140:239-244.
https://doi.org/10.1016/j.ajodo.2010.02.037
[4].
Jagdish, N.,
Padmanabhan, S., Chitharanjan, A. B., Revathi, J., Palani, G., Sambasivam, M.,
2009, Cytotoxicity and Degree of Conversion of Orthodontic Adhesives. Angle
Orthod, 79:1133-1138. https://doi.org/10.2319/080808-418R.1
[5].
Chapin, R. E.,
Adams, J., Boekelheide, K., Gray L. E., Jr., Hayward S. W., Lees, P. S., 2008,
NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of
Bisphenol A., Birth Defects Res B Dev Reprod Toxicol, 83:157-395. https://doi.org/10.2319/080808-418R.1
[6].
Ryou, D-B.,
Park, H-S., Kim, K-H., Kwon, T-Y., 2008., Use of Flowable Composites for
Orthodontic Bracket Bonding. Angle Orthod, 78:1105-1109. https://doi.org/10.2319/013008-51.1
[7].
Tecco, S.,
Traini, T., Caputi, S., Festa, F., de Luca, V., D'Attilio, M., 2005, A New
One-Step Dental Flowable Composite for Orthodontic Use: An In Vitro Bond Strength
Study, Angle Orthod, 75:672-677. https://doi.org/10.1043/0003-3219(2005)75[672:ANODFC]2.0.CO;2
[8].
Uysal, T., Sari,
Z., Demir, A., 2004, Are the Flowable Composites Suitable for Orthodontic
Bracket Bonding? Angle Orthod, 74:697-702. https://doi.org/10.1043/0003-3219(2004)074%3C0697:ATFCSF%3E2.0.CO;2
[9].
Cohen, W. J.,
Wiltshire, W. A., Dawes, C., Lavelle, C. L., 2003, Long-Term in Vitro Fluoride
Release and Rerelease from Orthodontic Bonding Materials Containing Fluoride. Am.
J. Orthod. Dentofac. Orthop., 124, 571–576. https://doi.org/10.1016/S0889-5406(03)00573-0
[10].
Hussein, F. A.;
Hashem, M. I., Chalisserry, E. P., Anil, S., 2014. The Impact of Chlorhexidine
Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J.
Contemp. Dent. Pract., 15, 688–692. https://doi.org/10.5005/jp-journals-10024-1600
[11]. Chung, S. H., Cho, S., Kim, K., Lim, B. S., Ahn, S. J.,
2017. Antimicrobial and Physical Characteristics of Orthodontic Primers
Containing Antimicrobial Agents. Angle Orthod., 87, 307–312. https://doi.org/10.2319/052516-416.1
[12]. Duraisamy R, Ganapathy D, Shanmugam R., 2021. Nanocomposites Used In
Prosthodontics and Implantology-A Review. International Journal of Dentistry
and Oral Science. Sep 21;8(9):4380-7. https://d1wqtxts1xzle7.cloudfront.net/73188292/IJDOS_2377_8075_08_9043-libre.pdf?1634724245=&response-content-disposition=inline%3B+filename%3DNanocomposites_Used_In_Prosthodontics_An.pdf&Expires=1719480966&Signature=YBSM9FoV3ZA2lQVIwviVMRgzOPTtGQZUfjRI72fstd~ZJdtYIwWD-oJgubgC-pIpUiGTlefKlM4DrsZFWwAfXFBGLmfyBLDDW~3z1brfYfOYpeL7lvuDSVocTb9MT8Y8KgyxzMM5voQIlHeBIKeVKM-EPeQoTGgcJZ-yc9COPV7e3T8NaqJe4GjtMsW-EiLq8uRTzW9QjatXzISq9bHktyMjTYeMvOnRMxghXrbHpivAO4cus7WMJeOD52HZcDCrUz5KzgvIntmrZT4jUi0FUvTb4-maaWxKsa3uI8gJrVUiIQlAYnfNWPs~9F-8T~M6T6oCjDIJK6xgt8NHJex-Ow__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
[13]. Song, W., Ge, S., 2019. Application of Antimicrobial
Nanoparticles in Dentistry. Molecules, 24, 1033. https://doi.org/10.3390/molecules24061033
[14]. Chokkattu, J. J, Mary, D. J, Shanmugam, R., Neeharika, S., 2022.
Embryonic Toxicology Evaluation of Ginger-And Clove-Mediated Titanium Oxide
Nanoparticles-Based Dental Varnish With Zebrafish. The Journal of
Contemporary Dental Practice. Nov 1;23(11):1158. https://thejcdp.com/doi/JCDP/pdf/10.5005/jp-journals-10024-3436
[15]. Govindankutty, D., 2015. Applications of
Nanotechnology in Orthodontics and its Future Implications, Int. J. Appl.
Dent. Sci., 1, 166–171. http://www.oraljournal.com/
[16]. Varon-Shahar, E., Sharon, E., Zabrovsky, A.,
Houri-Haddad, Y., Beyth, N., 2019. Antibacterial Orthodontic Cements and
Adhesives: A Possible Solution to Streptococcus Mutans Outgrowth Adjacent to
Orthodontic Appliances. Oral Health Prev. Dent., 17, 49–56. https://doi.org/10.3290/j.ohpd.a41983
[17]. Akhavan, A., Sodagar, A., Mojtahedzadeh, F., Sodagar,
K., 2013. Investigating the Effect of Incorporating
Nanosilver/Nanohydroxyapatite Particles on the Shear Bond Strength of
Orthodontic Adhesives. Acta Odontol. Scand., 71, 1038–1042. https://doi.org/10.3109/00016357.2012.741699
[18]. Krithikadatta, J., Gopikrishna, V., Datta, M., CRIS
Guidelines (Checklist for Reporting In-vitro Studies): A Concept Note on the
Need For Standardized Guidelines for Improving Quality and Transparency in
Reporting In-Vitro Studies in Experimental Dental Research. J Conserv Dent.
2014 Jul;17(4):301-4.
[19]. Felemban, Nayef & Ebrahim, Mohamed., 2017, Effect
of Adhesive Layers on Microshear Bond Strength of Nanocomposite Resin to Dentin.
J Clin Exp Dent., 9(2):e186-90. https://doi.org/10.4317%2Fjced.53133
[20]. Behnaz, M., Dalaie, K., Mirmohammadsadeghi, H.,
Salehi, H., Rakhshan, V., Aslani, F., 2018. Shear Bond Strength and Adhesive
Remnant Index of Orthodontic Brackets Bonded to Enamel Using Adhesive Systems
Mixed with TiO2 Nanoparticles.
Dent. Press J. Orthod., 23, 43.e1–43.e7. http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2176-94512018000410001
[21]. Farzanegan, F., Shafaee, H., Darroudi, M., Rangrazi,
A., 2021. Effect of the Incorporation of Chitosan and TiO2 Nanoparticles on the Shear Bond Strength of an
Orthodontic Adhesive: An in Vitro Study. J. Adv. Oral Res., 12, 261–266. https://doi.org/10.1177/23202068211015447
[22]. Felemban, N. H., Ebrahim, M. I., 2017. The Influence
of Adding Modified Zirconium Oxide Titanium Dioxide Nano-Particles on
Mechanical Properties of Orthodontic Adhesive: An in Vitro Study. BMC Oral
Health, 17, 43. https://doi.org/10.1186/s12903-017-0332-2
[23]. Arhun,
N., Arman, A., Cehreli, S B., Arikan, S., Karabulut, E., Gulsahi, K., 2006. Microleakage Beneath Ceramic and Metal Brackets Bonded
with a Conventional and An Antibacterial Adhesive System. Angle Orthod. November; 76 ( 6): 1028– 34. https://doi.org/10.2319/101805-368
[24]. Cacciafesta, V., Sfondrini, M F., De Angelis, M.,
Scribante, A., Klersy, C., 2003. Effect of Water and Saliva Contamination on
Shear Bond Strength of Brackets Bonded with Conventional, Hydrophilic, and Self-etching
Primers. Am J Orthod Dentofacial Orthop. Jun;123(6): 633-40. https://doi.org/10.1016/S0889-5406(03)00198-7
[25]. Asiry, M. A., Alshahrani, I., Alqahtani, N. D.,
Durgesh, B., 2019. Efficacy of Yttrium (Iii) Fluoride Nanoparticles in
Orthodontic Bonding. J. Nanosci. Nanotechnol., 19, 1105–1110. https://doi.org/10.1166/jnn.2019.15894
[26]. Amaechi, B. T., Mcgarrell, B., Luong, M. N., Okoye, L.
O., Gakunga, P. T., 2021. Prevention of White Spot Lesions around Orthodontic
Brackets using Organoselenium-Containing Antimicrobial Enamel Surface Sealant.
Heliyon, 7, 3. https://doi.org/10.1016/j.heliyon.2021.e06490
[27]. Hu, H., Feng, C., Jiang, Z., Wang, L., Shrestha, S.,
Su, X., Shu, Y., Ge, L., Lai, W., Hua, F., 2019. Effectiveness of
Remineralising Agents in Prevention and Treatment of Orthodontically Induced
White Spot Lesions: A Protocol for a Systematic Review Incorporating Network
Meta-Analysis. Syst. Rev., 8, 339. https://doi.org/10.1186/s13643-019-1253-8
[28]. Yun, Z., Qin, D., Wei, F., Xiaobing, L., 2022.
Application of Antibacterial Nanoparticles in Orthodontic Materials. Nanotechnol.
Rev., 11, 2433–2450. https://doi.org/10.1515/ntrev-2022-0137.
[29]. Assery, M., Ajwa, N., Alshamrani, A., Alanazi, B.,
Durgesh, B., Matinlinna, J., 2019. Titanium Dioxide Nanoparticles Reinforced
Experimental Resin Composite for Orthodontic Bonding. Mater. Res. Express,
6, 125098. https://doi.org/10.1088/2053-1591/ab5a93
[30]. Poosti, M., Ramazanzadeh, B., Zebarjad, M.,
Javadzadeh, P., Naderinasab, M., Shakeri, M.T., 2013. Shear Bond Strength and
Antibacterial Effects of Orthodontic Composite Containing TiO2
Nanoparticles. Eur. J. Orthod., 35, 676–679. https://doi.org/10.1093/ejo/cjs073
[31]. Heravi, F., Ramezani, M., Poosti, M., Hosseini, M.,
Shajiei, A., Ahrari, F., 2013. In Vitro Cytotoxicity Assessment of an Orthodontic
Composite Containing Titanium-Dioxide Nano-Particles. J. Dent. Res. Dent.
Clin. Dent. Prospect., 7, 192–198. https://doi.org/10.5681%2Fjoddd.2013.031
[32]. Ulker, M., Uysal, T., Ramoglu, S I., Ertas, H., 2009.
Microleakage Under Orthodontic Brackets Using High-Intensity Curing Lights. Angle
Orthod., 79:144–9. https://doi.org/10.2319/111607-534.1
[33]. Uysal, T., Ramoglu, S I., Ulker, M., Ertas, H., 2010.
Effects of High-Intensity Curing Lights on Microleakage Under Orthodontic Bands.
Am J Orthod Dentofacial Orthop., 138:201–7. https://doi.org/10.1016/j.ajodo.2008.09.032
[34]. Abdelnaby, Y L., Al-Wakeel, E E., 2010. Influence of
Modifying the Resin Coat Application Protocol on Bond Strength and Microleakage
of Metal Orthodontic Brackets. Angle Orthod., 80:378–84. https://doi.org/10.2319/042109-223.1
[35]. Navarro, R., Vicente, A., Ortiz, A. J, Bravo, L . A., 2011,
The Effects of Two Soft Drinks on Bond Strength, Bracket Microleakage, and Adhesive
Remnant on Intact and Sealed Enamel, Eur J Orthod, 33:60–5. https://doi.org/10.1093/ejo/cjq018
[36]. Uysal, T., Ulker, M., Ramoglu, S. I., Ertas, H., 2008.
Microleakage Under Metallic and Ceramic Brackets Bonded with Orthodontic Self-Etching
Primer Systems. Angle Orthod., 78:1089–94. https://doi.org/10.2319/100507-481.1
[37]. Ramoglu, S. I., Uysal, T., Ulker, M., Ertas, H., 2009.
Microleakage Under Ceramic and Metallic Brackets Bonded with Resin-Modified
Glass Ionomer. Angle Orthod. Jan;79(1):138-43. https://doi.org/10.2319/102607-508.1
[38]. Yagci, A., Uysal, T., Ulker, M., Ramoglu, S I., 2010, Microleakage
Under Orthodontic Brackets Bonded with the Custom Base Indirect Bonding
Technique, Eur J Orthod., Jun;32 (3):259-63. https://doi.org/10.1093/ejo/cjp090
[39]. Alkis, H., Turkkahraman, H., Adanir, N., 2015. Microleakage
Under Orthodontic Brackets Bonded with Different Adhesive Systems, Eur J
Dent. Jan-Mar;9(1):117-121. https://doi.org/10.4103/1305-7456.149656