An In-Vitro Comparative Evaluation of Microleakage Beneath Metal Orthodontic Brackets when Bonded using Conventional and Titanium Dioxide Nanoparticle Infiltrated Orthodontic Adhesive Resin

Download Article

DOI: 10.21522/TIJPH.2013.12.02.Art034

Authors : Aravind Kumar Subramanian, Harsha L

Abstract:

The objective of this present study was to evaluate and compare the microleakage underneath metal orthodontic brackets when bonded with conventional and Titanium dioxide nanoparticle-infiltrated orthodontic adhesive. Ten human caries-free premolars were extracted atraumatically for orthodontics purposes and were randomly allotted into two groups, Group 1: Conventional orthodontic adhesive resin- An acid-etching adhesive system: Enlight composite (ORMCO) and Group 2: An Experimental acid-etching orthodontic adhesive system that was infiltered with Titanium dioxide. An orthodontic adhesive containing 1% nanoparticle was prepared. The metal brackets were bonded to the teeth using the adhesive group to which they belonged. All specimens underwent thermocycling in deionized water for 1000 cycles with a dwell time of 30 seconds and a transfer time of 0 seconds after being stored at 37°C for four weeks in distilled water. The next step involved 24 hours of submersion in a 0.5% basic fuchsin solution. With a low-speed diamond saw, four parallel bucco-lingual longitudinal sections were cut through the occlusal surface. Two calibrated researchers who were blindfolded were examined with a stereomicroscope at a magnification of 16x. Every section's incisal and gingival margins were measured between the bracket-adhesive and adhesive-enamel interfaces. The collected data were tabulated, and the Shapiro-Wilk test for normality was done. At the enamel adhesive interface and the bracket adhesive interface, brackets bonded with the experimental TiO2 infiltrated orthodontic adhesive resin had higher mean microleakage scores than brackets bonded with conventional composite. However, this difference was only statistically significant at the enamel adhesive interface (p > 0.05).

References:

[1].   Sruthi, M. A., Gurunathan, D., 2022, An Evidence-Based Classification on the Location of White Spot Lesions in Primary Teeth: A Pilot Study. World Journal of Dentistry. Apr 11;13(3):261-5. https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2044

[2].   Verma, P., Jain, R. K., 2022. Visual Assessment of Extent of White Spot Lesions in Subjects Treated with Fixed Orthodontic Appliances: A Retrospective Study. World Journal of Dentistry. May;13(3):246. https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2042

[3].   Sunitha, C., Kailasam, V., Padmanabhan, S., Chitharanjan, A. B., 2011, Bisphenol A Release From an Orthodontic Adhesive and Its Correlation with the Degree of Conversion on Varying Light-Curing Tip Distances. Am J Orthod Dentofacial Orthop, 140:239-244. https://doi.org/10.1016/j.ajodo.2010.02.037

[4].   Jagdish, N., Padmanabhan, S., Chitharanjan, A. B., Revathi, J., Palani, G., Sambasivam, M., 2009, Cytotoxicity and Degree of Conversion of Orthodontic Adhesives. Angle Orthod, 79:1133-1138. https://doi.org/10.2319/080808-418R.1

[5].   Chapin, R. E., Adams, J., Boekelheide, K., Gray L. E., Jr., Hayward S. W., Lees, P. S., 2008, NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of Bisphenol A., Birth Defects Res B Dev Reprod Toxicol, 83:157-395. https://doi.org/10.2319/080808-418R.1

[6].   Ryou, D-B., Park, H-S., Kim, K-H., Kwon, T-Y., 2008., Use of Flowable Composites for Orthodontic Bracket Bonding. Angle Orthod, 78:1105-1109. https://doi.org/10.2319/013008-51.1

[7].   Tecco, S., Traini, T., Caputi, S., Festa, F., de Luca, V., D'Attilio, M., 2005, A New One-Step Dental Flowable Composite for Orthodontic Use: An In Vitro Bond Strength Study, Angle Orthod, 75:672-677. https://doi.org/10.1043/0003-3219(2005)75[672:ANODFC]2.0.CO;2

[8].   Uysal, T., Sari, Z., Demir, A., 2004, Are the Flowable Composites Suitable for Orthodontic Bracket Bonding? Angle Orthod, 74:697-702. https://doi.org/10.1043/0003-3219(2004)074%3C0697:ATFCSF%3E2.0.CO;2

[9].   Cohen, W. J., Wiltshire, W. A., Dawes, C., Lavelle, C. L., 2003, Long-Term in Vitro Fluoride Release and Rerelease from Orthodontic Bonding Materials Containing Fluoride. Am. J. Orthod. Dentofac. Orthop., 124, 571–576. https://doi.org/10.1016/S0889-5406(03)00573-0

[10].           Hussein, F. A.; Hashem, M. I., Chalisserry, E. P., Anil, S., 2014. The Impact of Chlorhexidine Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J. Contemp. Dent. Pract., 15, 688–692. https://doi.org/10.5005/jp-journals-10024-1600

[11].  Chung, S. H., Cho, S., Kim, K., Lim, B. S., Ahn, S. J., 2017. Antimicrobial and Physical Characteristics of Orthodontic Primers Containing Antimicrobial Agents. Angle Orthod., 87, 307–312. https://doi.org/10.2319/052516-416.1

[12].  Duraisamy R, Ganapathy D, Shanmugam R., 2021. Nanocomposites Used In Prosthodontics and Implantology-A Review. International Journal of Dentistry and Oral Science. Sep 21;8(9):4380-7. https://d1wqtxts1xzle7.cloudfront.net/73188292/IJDOS_2377_8075_08_9043-libre.pdf?1634724245=&response-content-disposition=inline%3B+filename%3DNanocomposites_Used_In_Prosthodontics_An.pdf&Expires=1719480966&Signature=YBSM9FoV3ZA2lQVIwviVMRgzOPTtGQZUfjRI72fstd~ZJdtYIwWD-oJgubgC-pIpUiGTlefKlM4DrsZFWwAfXFBGLmfyBLDDW~3z1brfYfOYpeL7lvuDSVocTb9MT8Y8KgyxzMM5voQIlHeBIKeVKM-EPeQoTGgcJZ-yc9COPV7e3T8NaqJe4GjtMsW-EiLq8uRTzW9QjatXzISq9bHktyMjTYeMvOnRMxghXrbHpivAO4cus7WMJeOD52HZcDCrUz5KzgvIntmrZT4jUi0FUvTb4-maaWxKsa3uI8gJrVUiIQlAYnfNWPs~9F-8T~M6T6oCjDIJK6xgt8NHJex-Ow__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

[13].  Song, W., Ge, S., 2019. Application of Antimicrobial Nanoparticles in Dentistry. Molecules, 24, 1033. https://doi.org/10.3390/molecules24061033

[14].  Chokkattu, J. J, Mary, D. J, Shanmugam, R., Neeharika, S., 2022. Embryonic Toxicology Evaluation of Ginger-And Clove-Mediated Titanium Oxide Nanoparticles-Based Dental Varnish With Zebrafish. The Journal of Contemporary Dental Practice. Nov 1;23(11):1158. https://thejcdp.com/doi/JCDP/pdf/10.5005/jp-journals-10024-3436

[15].  Govindankutty, D., 2015. Applications of Nanotechnology in Orthodontics and its Future Implications, Int. J. Appl. Dent. Sci., 1, 166171. http://www.oraljournal.com/

[16].  Varon-Shahar, E., Sharon, E., Zabrovsky, A., Houri-Haddad, Y., Beyth, N., 2019. Antibacterial Orthodontic Cements and Adhesives: A Possible Solution to Streptococcus Mutans Outgrowth Adjacent to Orthodontic Appliances. Oral Health Prev. Dent., 17, 49–56. https://doi.org/10.3290/j.ohpd.a41983

[17].  Akhavan, A., Sodagar, A., Mojtahedzadeh, F., Sodagar, K., 2013. Investigating the Effect of Incorporating Nanosilver/Nanohydroxyapatite Particles on the Shear Bond Strength of Orthodontic Adhesives. Acta Odontol. Scand., 71, 10381042. https://doi.org/10.3109/00016357.2012.741699

[18].  Krithikadatta, J., Gopikrishna, V., Datta, M., CRIS Guidelines (Checklist for Reporting In-vitro Studies): A Concept Note on the Need For Standardized Guidelines for Improving Quality and Transparency in Reporting In-Vitro Studies in Experimental Dental Research. J Conserv Dent. 2014 Jul;17(4):301-4.

[19].  Felemban, Nayef & Ebrahim, Mohamed., 2017, Effect of Adhesive Layers on Microshear Bond Strength of Nanocomposite Resin to Dentin. J Clin Exp Dent., 9(2):e186-90. https://doi.org/10.4317%2Fjced.53133

[20].  Behnaz, M., Dalaie, K., Mirmohammadsadeghi, H., Salehi, H., Rakhshan, V., Aslani, F., 2018. Shear Bond Strength and Adhesive Remnant Index of Orthodontic Brackets Bonded to Enamel Using Adhesive Systems Mixed with TiO2 Nanoparticles. Dent. Press J. Orthod., 23, 43.e143.e7. http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2176-94512018000410001

[21].  Farzanegan, F., Shafaee, H., Darroudi, M., Rangrazi, A., 2021. Effect of the Incorporation of Chitosan and TiO2 Nanoparticles on the Shear Bond Strength of an Orthodontic Adhesive: An in Vitro Study. J. Adv. Oral Res., 12, 261–266. https://doi.org/10.1177/23202068211015447

[22].  Felemban, N. H., Ebrahim, M. I., 2017. The Influence of Adding Modified Zirconium Oxide Titanium Dioxide Nano-Particles on Mechanical Properties of Orthodontic Adhesive: An in Vitro Study. BMC Oral Health, 17, 43. https://doi.org/10.1186/s12903-017-0332-2

[23].  Arhun, N., Arman, A., Cehreli, S B., Arikan, S., Karabulut, E., Gulsahi, K., 2006. Microleakage Beneath Ceramic and Metal Brackets Bonded with a Conventional and An Antibacterial Adhesive System. Angle Orthod. November; 76 ( 6): 1028– 34. https://doi.org/10.2319/101805-368

[24].  Cacciafesta, V., Sfondrini, M F., De Angelis, M., Scribante, A., Klersy, C., 2003. Effect of Water and Saliva Contamination on Shear Bond Strength of Brackets Bonded with Conventional, Hydrophilic, and Self-etching Primers. Am J Orthod Dentofacial Orthop. Jun;123(6): 633-40. https://doi.org/10.1016/S0889-5406(03)00198-7

[25].  Asiry, M. A., Alshahrani, I., Alqahtani, N. D., Durgesh, B., 2019. Efficacy of Yttrium (Iii) Fluoride Nanoparticles in Orthodontic Bonding. J. Nanosci. Nanotechnol., 19, 11051110. https://doi.org/10.1166/jnn.2019.15894

[26].  Amaechi, B. T., Mcgarrell, B., Luong, M. N., Okoye, L. O., Gakunga, P. T., 2021. Prevention of White Spot Lesions around Orthodontic Brackets using Organoselenium-Containing Antimicrobial Enamel Surface Sealant. Heliyon, 7, 3. https://doi.org/10.1016/j.heliyon.2021.e06490

[27].  Hu, H., Feng, C., Jiang, Z., Wang, L., Shrestha, S., Su, X., Shu, Y., Ge, L., Lai, W., Hua, F., 2019. Effectiveness of Remineralising Agents in Prevention and Treatment of Orthodontically Induced White Spot Lesions: A Protocol for a Systematic Review Incorporating Network Meta-Analysis. Syst. Rev., 8, 339. https://doi.org/10.1186/s13643-019-1253-8

[28].  Yun, Z., Qin, D., Wei, F., Xiaobing, L., 2022. Application of Antibacterial Nanoparticles in Orthodontic Materials. Nanotechnol. Rev., 11, 2433–2450. https://doi.org/10.1515/ntrev-2022-0137.

[29].  Assery, M., Ajwa, N., Alshamrani, A., Alanazi, B., Durgesh, B., Matinlinna, J., 2019. Titanium Dioxide Nanoparticles Reinforced Experimental Resin Composite for Orthodontic Bonding. Mater. Res. Express, 6, 125098. https://doi.org/10.1088/2053-1591/ab5a93

[30].  Poosti, M., Ramazanzadeh, B., Zebarjad, M., Javadzadeh, P., Naderinasab, M., Shakeri, M.T., 2013. Shear Bond Strength and Antibacterial Effects of Orthodontic Composite Containing TiO2 Nanoparticles. Eur. J. Orthod., 35, 676–679. https://doi.org/10.1093/ejo/cjs073

[31].  Heravi, F., Ramezani, M., Poosti, M., Hosseini, M., Shajiei, A., Ahrari, F., 2013. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-Dioxide Nano-Particles. J. Dent. Res. Dent. Clin. Dent. Prospect., 7, 192–198. https://doi.org/10.5681%2Fjoddd.2013.031

[32].  Ulker, M., Uysal, T., Ramoglu, S I., Ertas, H., 2009. Microleakage Under Orthodontic Brackets Using High-Intensity Curing Lights. Angle Orthod., 79:144–9. https://doi.org/10.2319/111607-534.1

[33].  Uysal, T., Ramoglu, S I., Ulker, M., Ertas, H., 2010. Effects of High-Intensity Curing Lights on Microleakage Under Orthodontic Bands. Am J Orthod Dentofacial Orthop., 138:201–7. https://doi.org/10.1016/j.ajodo.2008.09.032

[34].  Abdelnaby, Y L., Al-Wakeel, E E., 2010. Influence of Modifying the Resin Coat Application Protocol on Bond Strength and Microleakage of Metal Orthodontic Brackets. Angle Orthod., 80:378–84. https://doi.org/10.2319/042109-223.1

[35].  Navarro, R., Vicente, A., Ortiz, A. J, Bravo, L . A., 2011, The Effects of Two Soft Drinks on Bond Strength, Bracket Microleakage, and Adhesive Remnant on Intact and Sealed Enamel, Eur J Orthod, 33:60–5. https://doi.org/10.1093/ejo/cjq018

[36].  Uysal, T., Ulker, M., Ramoglu, S. I., Ertas, H., 2008. Microleakage Under Metallic and Ceramic Brackets Bonded with Orthodontic Self-Etching Primer Systems. Angle Orthod., 78:1089–94. https://doi.org/10.2319/100507-481.1

[37].  Ramoglu, S. I., Uysal, T., Ulker, M., Ertas, H., 2009. Microleakage Under Ceramic and Metallic Brackets Bonded with Resin-Modified Glass Ionomer. Angle Orthod. Jan;79(1):138-43. https://doi.org/10.2319/102607-508.1

[38].  Yagci, A., Uysal, T., Ulker, M., Ramoglu, S I., 2010, Microleakage Under Orthodontic Brackets Bonded with the Custom Base Indirect Bonding Technique, Eur J Orthod., Jun;32 (3):259-63. https://doi.org/10.1093/ejo/cjp090

[39].  Alkis, H., Turkkahraman, H., Adanir, N., 2015. Microleakage Under Orthodontic Brackets Bonded with Different Adhesive Systems, Eur J Dent. Jan-Mar;9(1):117-121. https://doi.org/10.4103/1305-7456.149656