Evaluation of Physical and Mechanical Properties of a Novel Titanium Dioxide Nanoparticle Infiltrated Orthodontic Adhesive – An In-Vitro Study
Abstract:
References:
[1].
Sruthi, M. A., Gurunathan, D., 2022, An Evidence-Based
Classification on the Location of White Spot Lesions in Primary Teeth: A Pilot
Study. World Journal of Dentistry. Apr 11;13(3):261-5. https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2044
[2].
Verma, P., Jain, R. K., 2022. Visual Assessment of
Extent of White Spot Lesions in Subjects Treated with Fixed Orthodontic
Appliances: A Retrospective Study. World Journal of Dentistry.
May;13(3):246. https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2042
[3].
Richter, A. E., Arruda, A. O., Peters, M. C.,
Sohn, W., 2011., Incidence of Caries Lesions Among Patients Treated with
Comprehensive Orthodontics, Am. J. Orthod. Dentofac. Orthop., 139,
657–664, https://www.academia.edu/download/69601667/j.ajodo.2009.06.03720210913-11024-bqhi9r.pdf
[4].
Tufekci, E., Dixon, J. S., Gunsolley, J. C.,
Lindauer, S. J., 2011, Prevalence of White Spot Lesions During Orthodontic
Treatment with Fixed Appliances, Angle Orthod., 81, 206–210, https://meridian.allenpress.com/angle-orthodontist/article-pdf/81/2/206/1390940/051710-262_1.pdf
[5].
Julien, K. C., Buschang, P. H., Campbell,
P. M., 2013, Prevalence of White Spot Lesion Formation During Orthodontic
Treatment, Angle Orthod, 83 , 641–7, https://meridian.allenpress.com/angle-orthodontist/article-pdf/83/4/641/1394555/071712-584_1.pdf
[6].
Sundararaj, D., Venkatachalapathy, S.,
Tandon, A., Pereira, A., 2015, Critical Evaluation of Incidence and Prevalence
of White Spot Lesions During Fixed Orthodontic Appliance Treatment: A
Meta-Analysis, J Int Soc Prev Community Dent, 5:433–9, https://journals.lww.com/jpcd/fulltext/2015/05060/Critical_evaluation_of_incidence_and_prevalence_of.1.aspx
[7].
Srivastava, K., Tikku, T., Khanna, R.,
Sachan, K., 2013, Risk Factors and Management of White Spot Lesions in
Orthodontics, J. Orthod. Sci, 2:43–49, https://journals.lww.com/jpcd/fulltext/2015/05060/Critical_evaluation_of_incidence_and_prevalence_of.1.aspx
[8].
Asiry, M. A., Alshahrani, I., Alqahtani,
N. D., Durgesh, B., 2019, Efficacy of Yttrium (Iii) Fluoride Nanoparticles in
Orthodontic Bonding, J. Nanosci. Nanotechnol, 19, 1105–1110, https://doi.org/10.1166/jnn.2019.15894
[9].
Assery, M., Ajwa, N., Alshamrani, A.,
Alanazi, B., Durgesh, B., Matinlinna, J., 2019 , Titanium Dioxide Nanoparticles
Reinforced Experimental Resin Composite for Orthodontic Bonding, Mater. Res.
Express, 6, 125098, 10.1088/2053-1591/ab5a93
[10]. Durgesh,
B. H., Alkheraif, A. A., Pavithra, D., Hashem, M. I., Alkhudhairy, F.,
Elsharawy, 2017, Evaluation of an Experimental Adhesive Resin for Orthodontic
Bonding, Mech. Compos. Mater, 53, 389–398, https://doi.org/10.1007/s11029-017-9670-z
[11]. Poosti,
M., Ramazanzadeh, B., Zebarjad, M., Javadzadeh, P., Naderinasab, M., Shakeri,
M. T., 2013, Shear Bond Strength and Antibacterial Effects of Orthodontic
Composite Containing TiO2 Nanoparticles, Eur. J. Orthod, 35,
676–679, https://doi.org/10.1093/ejo/cjs073
[12]. Khoroushi,
M., Kachuie, M., 2017, Prevention and Treatment of White Spot Lesions in
Orthodontic Patients, Contemp Clin Dent, Jan-Mar;8(1), 11-19, DOI:
10.4103/ccd.ccd_216_17
[13]. Chambers,
C., Stewart, S., Su, B., Sandy, J., Ireland, A., 2013, Prevention and Treatment
of Demineralisation During Fixed Appliance Therapy: A Review of Current Methods
and Future Applications. Br. Dent. J, 215, 505–511, https://doi.org/10.1038/sj.bdj.2013.1094
[14]. Ozak,
S. T., Ozkan, P., 2013, Nanotechnology and Dentistry, Eur. J. Dent, 7,
145–151, https://doi.org/10.1038/sj.bdj.2013.1094
[15]. Song, W.,
Ge, S., 2019, Application of Antimicrobial Nanoparticles in Dentistry, Molecules,
24, 1033, https://doi.org/10.3390/molecules24061033
[16]. Borzabadi-Farahani,
A., Borzabadi, E., Lynch, E., 2014, Nanoparticles in Orthodontics, a Review of
Antimicrobial and Anti-Caries Applications, Acta Odontol. Scand, 72, 413–417,
https://doi.org/10.3109/00016357.2013.859728
[17]. Govindankutty,
D., 2015, Applications of Nanotechnology in Orthodontics and Its Future
Implications, Int. J. Appl. Dent. Sci., 1, 166–171, https://www.oraljournal.com/pdf/2015/vol1issue4/PartC/1-4-25.pdf
[18]. Varon-Shahar,
E., Sharon, E., Zabrovsky, A., Houri-Haddad. Y., Beyth, N., 2019, Antibacterial
Orthodontic Cements and Adhesives: A Possible Solution to Streptococcus mutans
Outgrowth Adjacent to Orthodontic Appliances, Oral Health Prev. Dent,
17, 49–56, search.ebscohost.com
[19]. Sara
Dadkan., Mehrdad Khakbiz., Lida Ghazanfari., Meizi Chen., Ki-Bum Lee., 2022, Evaluation
of antibacterial and mechanical features of dental adhesives containing
colloidal gold nanoparticles. Journal of Molecular Liquids, 119824, https://doi.org/10.1016/j.molliq.2022.119824
[20]. Marco
Sanchez-Tito., Lidia Yileng Tay., 2024, Effect of The Addition of Silver
Nanoparticles on the Mechanical Properties of an Orthodontic Adhesive, The
Saudi Dental Journal, 36, 359–363, https://doi.org/10.1016/j.sdentj.2023.11.021
[21]. Xu, V. W.,
Nizami, M. Z. I., Yin, I. X., Yu, O. Y., Lung, C. Y. K, Chu, C. H., 2022,
Application of Copper Nanoparticles in Dentistry, Nanomaterials,
12(5):805, https://doi.org/10.3390/nano12050805
[22]. Pushpalatha,
C., Suresh, J., Gayathri, V. S, Sowmya, S. V., Augustine, D., Alamoudi, A.,
Zidane, B., Mohammad Albar, N. H., Patil, S., 2022, Zinc Oxide Nanoparticles: A
Review on Its Applications in Dentistry. Front Bioeng Biotechnol, May 19,
10:917990, https://doi.org/10.3389/fbioe.2022.917990
[23]. Guiar,
R. C. O., Nunes, L. P., Batista, E. S., Viana, M. M., Rodrigues, M. C.,
Bueno-Silva, B, Roscoe, M. G., 2022, Experimental Composite Containing Silicon
Dioxide-Coated Silver Nanoparticles for Orthodontic Bonding: Antimicrobial
Activity and Shear Bond Strength, Dental Press J Orthod, 27(3):e222116, https://doi.org/10.1590/2177-6709.27.3.e222116.oar
[24]. Aguiar,
R. C. O., Nunes, L. P., Batista, E. S., Viana, M. M., Rodrigues, M. C.,
Bueno-Silva, B., Roscoe, M. G., 2022, Experimental Composite Containing Silicon
Dioxide-Coated Silver Nanoparticles for Orthodontic Bonding: Antimicrobial
Activity and Shear Bond Strength, Dental Press J Orthod, 27 (3):e222116,
https://doi.org/10.1590/2177-6709.27.3.e222116.oar
[25]. Hasan,
L. A., 2021, Evaluation the Properties of Orthodontic Adhesive Incorporated
with Nano-Hydroxyapatite Particles, Saudi Dent J, Dec;33(8):1190-1196, https://doi.org/10.1016/j.sdentj.2021.01.001
[26]. Mansour,
K., Assery, Nancy, Ajwa., Ahoud Alshamrani., Bashayer, J. Alanazi, Bangalore, H.,
Durgesh, Jukka, P., Matinlinna., 2019, Titanium Dioxide Nanoparticles
Reinforced Experimental Resin Composite for Orthodontic Bonding Mater. Res,
Express 6, 125098, Doi: 10.1088/2053-1591/ab5a93
[27]. Reddy,
A. K., Kambalyal, P. B., Patil, S. R., Vankhre, M., Khan, M. Y., Kumar, T. R.,
2016, Comparative Evaluation and Influence on Shear Bond Strength of
Incorporating Silver, Zinc Oxide, and Titanium Dioxide Nanoparticles in
Orthodontic Adhesive. J. Orthod. Sci, 5, 127–131, https://journals.lww.com/joos/_layouts/15/oaks.journals/downloadpdf.aspx?an=01733424-201605040-00004
[28]. Salehi,
P., Babanouri, N., Roein-Peikar, M., Zare, F., 2018, Long-Term Antimicrobial
Assessment of Orthodontic Brackets Coated with Nitrogen-Doped Titanium Dioxide
against Streptococcus Mutans. Prog. Orthod, 19, 35, https://link.springer.com/article/10.1186/s40510-018-0236-y
[29]. Sodagar,
A., Akhoundi, M. S. A., Bahador, A., Jalali, Y. F., Behzadi, Z., Elhaminejad, F.,
Mirhashemi, A. H., 2017, Effect of TiO2 Nanoparticles Incorporation
on Antibacterial Properties and Shear Bond Strength of Dental Composite Used in
Orthodontics. Dent. Press J. Orthod, 22, 67–74, https://doi.org/10.1590/2177-6709.22.5.067-074.oar
[30]. Behnaz,
M., Dalaie, K., Mirmohammadsadeghi, H., Salehi, H., Rakhshan, V., Aslani, F.,
2018, Shear Bond Strength and Adhesive Remnant Index of Orthodontic Brackets
Bonded to Enamel Using Adhesive Systems Mixed with TiO2 Nanoparticles. Dent.
Press J. Orthod, 23, 43.e1–43.e7, https://doi.org/10.1590/2177-6709.23.4.43.e1-7.onl
[31]. Farzanegan,
F., Shafaee, H., Darroudi, M., Rangrazi, A., 2021, Effect of the Incorporation
of Chitosan and TiO2 Nanoparticles on the Shear Bond Strength of an
Orthodontic Adhesive: An in Vitro Study, J. Adv. Oral Res, 12, 261–266, https://doi.org/10.1177/23202068211015447
[32]. Felemban,
N. H., Ebrahim, M. I., 2017, The Influence of Adding Modified Zirconium
Oxide-Titanium Dioxide Nano-Particles on Mechanical Properties of Orthodontic
Adhesive: An in Vitro Study, BMC Oral Health, 17, 43, https://link.springer.com/article/10.1186/s12903-017-0332-2
[33]. Heravi,
F., Ramezani, M., Poosti, M., Hossein, M., Shajiei, A., Ahrari, F., 2013, In
Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing
Titanium-Dioxide Nano-Particles, J. Dent. Res. Dent. Clin. Dent. Prospect,
7, 192–198, https://doi.org/10.5681%2Fjoddd.2013.031
[34]. Nasim, I., Kamath, K., Rajeshkumar, S., 2020. Evaluation of the
Re-Mineralization Capacity of a Gold Nanoparticle-Based Dental Varnish: An in
vitro Study [Internet]. Journal of Conservative Dentistry.;23:390. https://doi.org/10.4103%2FJCD.JCD_315_20
[35]. Ying, S.,
Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., Hong, J., 2022, Green
Synthesis of Nanoparticles: Current Developments and Limitations, Environmental
Technology & Innovation, 26:102336, https://doi.org/10.1016/j.eti.2022.102336
[36]. Aravind
Kumar Subramanian, Harsha Lalit, Pugalmani Sivashanmugam, 2023, Preparation,
Characterization, and Evaluation of Cytotoxic Activity of a Novel Titanium
Dioxide Nanoparticle-infiltrated Orthodontic Adhesive: An in Vitro Study, World
Journal of Dentistry, 14(10):882-887, https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2319
[37]. Y.
Korkmaz, S. Gurgan., E. First., and D. Nathanson., 2010, Effect of Adhesives
and Thermocycling on the Shear Bond Strength of A Nano-Composite to Coronal and
Root Dentin, Operative Dentistry, vol. 35, no. 5, pp. 522–529, https://meridian.allenpress.com/operative-dentistry/article-pdf/35/5/522/1822903/09-185-l.pdf
[38]. Eliasson,
S. T., Dahl, J. E., 2020, Effect of Thermal Cycling on Temperature Changes and
Bond Strength in Different Test Specimens, Biomater Investig Dent, Jan
29;7(1):16-24, Doi: 10.1080/26415275.2019.1709470.
[39]. Aravind,
M., Amalanathan, M., Mary, M. S. M., 2021, Synthesis of Tio2 Nanoparticles by
Chemical and Green Synthesis Methods and their Multifaceted Properties, SN
Applied Sciences 3:409, https://link.springer.com/article/10.1007/s42452-021-04281-5
[40].
Dulger, B., Ozkan, G., Angi, O. S., Ozkan,
G., 2024, Green Synthesis of Tio2 Nanoparticles using Aloe Vera Extract as
Catalyst Support Material and Studies of their Catalytic Activity in
Dehydrogenation of Ethylenediamine Bisborane, International Journal of
Hydrogen https://doi.org/10.1016/j.ijhydene.2024.02.223
[41]. Pal, M.,
Garcia Serrano, J., Santiago, P., Pal, U., 2007, Size-Controlled Synthesis of
Spherical Tio2 Nanoparticles: Morphology, Crystallization, and Phase
Transition, J PhysChem, C 111(1):96–102, https://doi.org/10.1021/jp0618173
[42]. Ahmad,
M. Z., Alasiri, A. S., Ahmad, J., Alqahtani, A. A., Abdullah, M. M.,
Abdel-Wahab, B. A., Pathak, K., Saikia, R., Das, A., Sarma, H., Alzahrani, S. A.,
2022, Green Synthesis of Titanium Dioxide Nanoparticles using Ocimum sanctum
Leaf Extract: In Vitro Characterization and its Healing Efficacy in Diabetic
Wounds, Molecules, Nov 9;27(22):7712, https://www.mdpi.com/1420-3049/27/22/7712
[43]. Srinivasan,
M., Venkatesan, M., Arumugam, V., Natesan, G., Saravanan, N., Murugesan, S.,
Ramachandran, S., Ayyasamy, R., Pugazhendhi, A., 2019, Green Synthesis and
Characterization of Titanium Dioxide Nanoparticles (Tio2 Nps) Using
Sesbania Grandiflora and Evaluation of Toxicity in Zebrafish Embryos, Process
Biochem, 80:197–202, https://www.academia.edu/download/92621761/j.procbio.2019.02.01020221018-1-aka3st.pdf
[44].
Rajakumar, G., Rahuman, A. A., Roopan, S. M.,
Khanna, V. G., Elango, G., Kamaraj, C., 2012, Fungus-Mediated Biosynthesis and
Characterization of Tio2 Nanoparticles and their Activity Against Pathogenic
Bacteria, Spectrochim, Acta, Part A Mol. Biomol, Spectrosc, 91:23–29, https://doi.org/10.1016/j.saa.2012.01.011
[45]. K¹ H. T., Balaji Ganesh, S.,
Devi, R. G., 2020. Colour Stability of Composite Resins-a Review. Indian
Journal of Forensic Medicine & Toxicology. Oct 29;14(4):4673-8. https://www.researchgate.net/profile/Balaji-Ganeshs/publication/348959167_Colour_Stability_of_Composite_Resins_-A_Review/links/6018d80d45851517ef31fa5e/Colour-Stability-of-Composite-Resins-A-Review.pdf
[46]. Roy
Abhinab, C., Kaurani, P., Padiyar, U., Meena, S., Gupta, A., 2021, Effect of
Addition of Titanium Oxide and Zirconium Oxide Nanoparticles on the Surface
Roughness of Heat Cured Denture Base Resins: An In-Vitro study”, SVOA
Materials Science & Technology, 3(3) Pages: 36-44, https://www.academia.edu/download/67320946/SVOA_MST_03_022.pdf
[47]. Pires,
L. A., de Azevedo Silva, L. J., Ferrairo, B. M., Erbereli, R., Lovo, J. F. P.,
Ponce Gomes, O., Rubo, J. H., Lisboa-Filho, P. N., Griggs, J. A., Fortulan, C. A.,
et al., 2020, Effects of Zno/TiO2 Nanoparticle and TiO2 Nanotube
Additions to Dense Polycrystalline Hydroxyapatite Bioceramic from Bovine Bones.
Dent. Mater.;36, e38–e46, https://doi.org/10.1016/j.dental.2019.11.006
[48].
Felemban, N. H., Ebrahim, M. I., 2017, The
Influence of Adding Modified Zirconium Oxide-Titanium Dioxide Nano-Particles on
Mechanical Properties of Orthodontic Adhesive: An In Vitro Study, BMC Oral
Health, 17:43, https://link.springer.com/article/10.1186/s12903-017-0332-2