Evaluation of Physical and Mechanical Properties of a Novel Titanium Dioxide Nanoparticle Infiltrated Orthodontic Adhesive – An In-Vitro Study

Download Article

DOI: 10.21522/TIJPH.2013.12.02.Art033

Authors : Aravind Kumar Subramanian, Harsha L

Abstract:

This in-vitro study aims to assess and compare the physical and mechanical properties of a green synthesized (novel) Titanium dioxide nanoparticle infiltrated orthodontic adhesive with conventional orthodontic adhesive. A total of twenty disk-shaped specimens were fabricated by condensing the composite resin in a stainless-steel metal mold having a circular shape (10 x 2 mm) and polymerizing it using blue light (470nm). Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the TiO2 NPs. The results of physical properties such as colour stability, and surface roughness showed no significant mean difference and the microhardness of two orthodontic adhesives showed a significantly greater hardness for conventional adhesives. Conventional orthodontic adhesive showed significantly increased compressive strength and greater tensile strength for novel TiO2-NPs infiltrated orthodontic adhesive (p>0.05). The results also showed improved mechanical properties for both groups.

References:

[1].   Sruthi, M. A., Gurunathan, D., 2022, An Evidence-Based Classification on the Location of White Spot Lesions in Primary Teeth: A Pilot Study. World Journal of Dentistry. Apr 11;13(3):261-5. https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2044

[2].   Verma, P., Jain, R. K., 2022. Visual Assessment of Extent of White Spot Lesions in Subjects Treated with Fixed Orthodontic Appliances: A Retrospective Study. World Journal of Dentistry. May;13(3):246. https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2042

[3].   Richter, A. E., Arruda, A. O., Peters, M. C., Sohn, W., 2011., Incidence of Caries Lesions Among Patients Treated with Comprehensive Orthodontics, Am. J. Orthod. Dentofac. Orthop., 139, 657–664, https://www.academia.edu/download/69601667/j.ajodo.2009.06.03720210913-11024-bqhi9r.pdf

[4].   Tufekci, E., Dixon, J. S., Gunsolley, J. C., Lindauer, S. J., 2011, Prevalence of White Spot Lesions During Orthodontic Treatment with Fixed Appliances, Angle Orthod., 81, 206–210, https://meridian.allenpress.com/angle-orthodontist/article-pdf/81/2/206/1390940/051710-262_1.pdf

[5].   Julien, K. C., Buschang, P. H., Campbell, P. M., 2013, Prevalence of White Spot Lesion Formation During Orthodontic Treatment, Angle Orthod, 83 , 641–7, https://meridian.allenpress.com/angle-orthodontist/article-pdf/83/4/641/1394555/071712-584_1.pdf

[6].   Sundararaj, D., Venkatachalapathy, S., Tandon, A., Pereira, A., 2015, Critical Evaluation of Incidence and Prevalence of White Spot Lesions During Fixed Orthodontic Appliance Treatment: A Meta-Analysis, J Int Soc Prev Community Dent, 5:433–9, https://journals.lww.com/jpcd/fulltext/2015/05060/Critical_evaluation_of_incidence_and_prevalence_of.1.aspx

[7].   Srivastava, K., Tikku, T., Khanna, R., Sachan, K., 2013, Risk Factors and Management of White Spot Lesions in Orthodontics, J. Orthod. Sci, 2:43–49, https://journals.lww.com/jpcd/fulltext/2015/05060/Critical_evaluation_of_incidence_and_prevalence_of.1.aspx

[8].   Asiry, M. A., Alshahrani, I., Alqahtani, N. D., Durgesh, B., 2019, Efficacy of Yttrium (Iii) Fluoride Nanoparticles in Orthodontic Bonding, J. Nanosci. Nanotechnol, 19, 1105–1110, https://doi.org/10.1166/jnn.2019.15894

[9].   Assery, M., Ajwa, N., Alshamrani, A., Alanazi, B., Durgesh, B., Matinlinna, J., 2019 , Titanium Dioxide Nanoparticles Reinforced Experimental Resin Composite for Orthodontic Bonding, Mater. Res. Express, 6, 125098, 10.1088/2053-1591/ab5a93

[10].  Durgesh, B. H., Alkheraif, A. A., Pavithra, D., Hashem, M. I., Alkhudhairy, F., Elsharawy, 2017, Evaluation of an Experimental Adhesive Resin for Orthodontic Bonding, Mech. Compos. Mater, 53, 389–398, https://doi.org/10.1007/s11029-017-9670-z

[11].  Poosti, M., Ramazanzadeh, B., Zebarjad, M., Javadzadeh, P., Naderinasab, M., Shakeri, M. T., 2013, Shear Bond Strength and Antibacterial Effects of Orthodontic Composite Containing TiO2 Nanoparticles, Eur. J. Orthod, 35, 676–679, https://doi.org/10.1093/ejo/cjs073

[12].  Khoroushi, M., Kachuie, M., 2017, Prevention and Treatment of White Spot Lesions in Orthodontic Patients, Contemp Clin Dent, Jan-Mar;8(1), 11-19, DOI: 10.4103/ccd.ccd_216_17

[13].  Chambers, C., Stewart, S., Su, B., Sandy, J., Ireland, A., 2013, Prevention and Treatment of Demineralisation During Fixed Appliance Therapy: A Review of Current Methods and Future Applications. Br. Dent. J, 215, 505–511, https://doi.org/10.1038/sj.bdj.2013.1094

[14].  Ozak, S. T., Ozkan, P., 2013, Nanotechnology and Dentistry, Eur. J. Dent, 7, 145–151, https://doi.org/10.1038/sj.bdj.2013.1094

[15].  Song, W., Ge, S., 2019, Application of Antimicrobial Nanoparticles in Dentistry, Molecules, 24, 1033, https://doi.org/10.3390/molecules24061033

[16].  Borzabadi-Farahani, A., Borzabadi, E., Lynch, E., 2014, Nanoparticles in Orthodontics, a Review of Antimicrobial and Anti-Caries Applications, Acta Odontol. Scand, 72, 413–417, https://doi.org/10.3109/00016357.2013.859728

[17].  Govindankutty, D., 2015, Applications of Nanotechnology in Orthodontics and Its Future Implications, Int. J. Appl. Dent. Sci., 1, 166–171, https://www.oraljournal.com/pdf/2015/vol1issue4/PartC/1-4-25.pdf

[18].  Varon-Shahar, E., Sharon, E., Zabrovsky, A., Houri-Haddad. Y., Beyth, N., 2019, Antibacterial Orthodontic Cements and Adhesives: A Possible Solution to Streptococcus mutans Outgrowth Adjacent to Orthodontic Appliances, Oral Health Prev. Dent, 17, 49–56, search.ebscohost.com

[19].  Sara Dadkan., Mehrdad Khakbiz., Lida Ghazanfari., Meizi Chen., Ki-Bum Lee., 2022, Evaluation of antibacterial and mechanical features of dental adhesives containing colloidal gold nanoparticles. Journal of Molecular Liquids, 119824, https://doi.org/10.1016/j.molliq.2022.119824

[20].  Marco Sanchez-Tito., Lidia Yileng Tay., 2024, Effect of The Addition of Silver Nanoparticles on the Mechanical Properties of an Orthodontic Adhesive, The Saudi Dental Journal, 36, 359–363, https://doi.org/10.1016/j.sdentj.2023.11.021

[21].  Xu, V. W., Nizami, M. Z. I., Yin, I. X., Yu, O. Y., Lung, C. Y. K, Chu, C. H., 2022, Application of Copper Nanoparticles in Dentistry, Nanomaterials, 12(5):805, https://doi.org/10.3390/nano12050805

[22].  Pushpalatha, C., Suresh, J., Gayathri, V. S, Sowmya, S. V., Augustine, D., Alamoudi, A., Zidane, B., Mohammad Albar, N. H., Patil, S., 2022, Zinc Oxide Nanoparticles: A Review on Its Applications in Dentistry. Front Bioeng Biotechnol, May 19, 10:917990, https://doi.org/10.3389/fbioe.2022.917990

[23].  Guiar, R. C. O., Nunes, L. P., Batista, E. S., Viana, M. M., Rodrigues, M. C., Bueno-Silva, B, Roscoe, M. G., 2022, Experimental Composite Containing Silicon Dioxide-Coated Silver Nanoparticles for Orthodontic Bonding: Antimicrobial Activity and Shear Bond Strength, Dental Press J Orthod, 27(3):e222116, https://doi.org/10.1590/2177-6709.27.3.e222116.oar

[24].  Aguiar, R. C. O., Nunes, L. P., Batista, E. S., Viana, M. M., Rodrigues, M. C., Bueno-Silva, B., Roscoe, M. G., 2022, Experimental Composite Containing Silicon Dioxide-Coated Silver Nanoparticles for Orthodontic Bonding: Antimicrobial Activity and Shear Bond Strength, Dental Press J Orthod, 27 (3):e222116, https://doi.org/10.1590/2177-6709.27.3.e222116.oar

[25].  Hasan, L. A., 2021, Evaluation the Properties of Orthodontic Adhesive Incorporated with Nano-Hydroxyapatite Particles, Saudi Dent J, Dec;33(8):1190-1196, https://doi.org/10.1016/j.sdentj.2021.01.001

[26].  Mansour, K., Assery, Nancy, Ajwa., Ahoud Alshamrani., Bashayer, J. Alanazi, Bangalore, H., Durgesh, Jukka, P., Matinlinna., 2019, Titanium Dioxide Nanoparticles Reinforced Experimental Resin Composite for Orthodontic Bonding Mater. Res, Express 6, 125098, Doi: 10.1088/2053-1591/ab5a93

[27].  Reddy, A. K., Kambalyal, P. B., Patil, S. R., Vankhre, M., Khan, M. Y., Kumar, T. R., 2016, Comparative Evaluation and Influence on Shear Bond Strength of Incorporating Silver, Zinc Oxide, and Titanium Dioxide Nanoparticles in Orthodontic Adhesive. J. Orthod. Sci, 5, 127–131, https://journals.lww.com/joos/_layouts/15/oaks.journals/downloadpdf.aspx?an=01733424-201605040-00004

[28].  Salehi, P., Babanouri, N., Roein-Peikar, M., Zare, F., 2018, Long-Term Antimicrobial Assessment of Orthodontic Brackets Coated with Nitrogen-Doped Titanium Dioxide against Streptococcus Mutans. Prog. Orthod, 19, 35, https://link.springer.com/article/10.1186/s40510-018-0236-y

[29].  Sodagar, A., Akhoundi, M. S. A., Bahador, A., Jalali, Y. F., Behzadi, Z., Elhaminejad, F., Mirhashemi, A. H., 2017, Effect of TiO2 Nanoparticles Incorporation on Antibacterial Properties and Shear Bond Strength of Dental Composite Used in Orthodontics. Dent. Press J. Orthod, 22, 67–74, https://doi.org/10.1590/2177-6709.22.5.067-074.oar

[30].  Behnaz, M., Dalaie, K., Mirmohammadsadeghi, H., Salehi, H., Rakhshan, V., Aslani, F., 2018, Shear Bond Strength and Adhesive Remnant Index of Orthodontic Brackets Bonded to Enamel Using Adhesive Systems Mixed with TiO2 Nanoparticles. Dent. Press J. Orthod, 23, 43.e1–43.e7, https://doi.org/10.1590/2177-6709.23.4.43.e1-7.onl

[31].  Farzanegan, F., Shafaee, H., Darroudi, M., Rangrazi, A., 2021, Effect of the Incorporation of Chitosan and TiO2 Nanoparticles on the Shear Bond Strength of an Orthodontic Adhesive: An in Vitro Study, J. Adv. Oral Res, 12, 261–266, https://doi.org/10.1177/23202068211015447

[32].  Felemban, N. H., Ebrahim, M. I., 2017, The Influence of Adding Modified Zirconium Oxide-Titanium Dioxide Nano-Particles on Mechanical Properties of Orthodontic Adhesive: An in Vitro Study, BMC Oral Health, 17, 43, https://link.springer.com/article/10.1186/s12903-017-0332-2

[33].  Heravi, F., Ramezani, M., Poosti, M., Hossein, M., Shajiei, A., Ahrari, F., 2013, In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-Dioxide Nano-Particles, J. Dent. Res. Dent. Clin. Dent. Prospect, 7, 192–198, https://doi.org/10.5681%2Fjoddd.2013.031

[34].  Nasim, I., Kamath, K., Rajeshkumar, S., 2020. Evaluation of the Re-Mineralization Capacity of a Gold Nanoparticle-Based Dental Varnish: An in vitro Study [Internet]. Journal of Conservative Dentistry.;23:390. https://doi.org/10.4103%2FJCD.JCD_315_20

[35].  Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., Hong, J., 2022, Green Synthesis of Nanoparticles: Current Developments and Limitations, Environmental Technology & Innovation, 26:102336, https://doi.org/10.1016/j.eti.2022.102336

[36].  Aravind Kumar Subramanian, Harsha Lalit, Pugalmani Sivashanmugam, 2023, Preparation, Characterization, and Evaluation of Cytotoxic Activity of a Novel Titanium Dioxide Nanoparticle-infiltrated Orthodontic Adhesive: An in Vitro Study, World Journal of Dentistry, 14(10):882-887, https://www.wjoud.com/doi/WJOUD/pdf/10.5005/jp-journals-10015-2319

[37].  Y. Korkmaz, S. Gurgan., E. First., and D. Nathanson., 2010, Effect of Adhesives and Thermocycling on the Shear Bond Strength of A Nano-Composite to Coronal and Root Dentin, Operative Dentistry, vol. 35, no. 5, pp. 522–529, https://meridian.allenpress.com/operative-dentistry/article-pdf/35/5/522/1822903/09-185-l.pdf

[38].  Eliasson, S. T., Dahl, J. E., 2020, Effect of Thermal Cycling on Temperature Changes and Bond Strength in Different Test Specimens, Biomater Investig Dent, Jan 29;7(1):16-24, Doi: 10.1080/26415275.2019.1709470.

[39].  Aravind, M., Amalanathan, M., Mary, M. S. M., 2021, Synthesis of Tio2 Nanoparticles by Chemical and Green Synthesis Methods and their Multifaceted Properties, SN Applied Sciences 3:409, https://link.springer.com/article/10.1007/s42452-021-04281-5

[40].  Dulger, B., Ozkan, G., Angi, O. S., Ozkan, G., 2024, Green Synthesis of Tio2 Nanoparticles using Aloe Vera Extract as Catalyst Support Material and Studies of their Catalytic Activity in Dehydrogenation of Ethylenediamine Bisborane, International Journal of Hydrogen https://doi.org/10.1016/j.ijhydene.2024.02.223

[41].  Pal, M., Garcia Serrano, J., Santiago, P., Pal, U., 2007, Size-Controlled Synthesis of Spherical Tio2 Nanoparticles: Morphology, Crystallization, and Phase Transition, J PhysChem, C 111(1):96–102, https://doi.org/10.1021/jp0618173

[42].  Ahmad, M. Z., Alasiri, A. S., Ahmad, J., Alqahtani, A. A., Abdullah, M. M., Abdel-Wahab, B. A., Pathak, K., Saikia, R., Das, A., Sarma, H., Alzahrani, S. A., 2022, Green Synthesis of Titanium Dioxide Nanoparticles using Ocimum sanctum Leaf Extract: In Vitro Characterization and its Healing Efficacy in Diabetic Wounds, Molecules, Nov 9;27(22):7712, https://www.mdpi.com/1420-3049/27/22/7712

[43].  Srinivasan, M., Venkatesan, M., Arumugam, V., Natesan, G., Saravanan, N., Murugesan, S., Ramachandran, S., Ayyasamy, R., Pugazhendhi, A., 2019, Green Synthesis and Characterization of Titanium Dioxide Nanoparticles (Tio2 Nps) Using Sesbania Grandiflora and Evaluation of Toxicity in Zebrafish Embryos, Process Biochem, 80:197–202, https://www.academia.edu/download/92621761/j.procbio.2019.02.01020221018-1-aka3st.pdf

[44].  Rajakumar, G., Rahuman, A. A., Roopan, S. M., Khanna, V. G., Elango, G., Kamaraj, C., 2012, Fungus-Mediated Biosynthesis and Characterization of Tio2 Nanoparticles and their Activity Against Pathogenic Bacteria, Spectrochim, Acta, Part A Mol. Biomol, Spectrosc, 91:23–29, https://doi.org/10.1016/j.saa.2012.01.011

[45].   K¹ H. T., Balaji Ganesh, S., Devi, R. G., 2020. Colour Stability of Composite Resins-a Review. Indian Journal of Forensic Medicine & Toxicology. Oct 29;14(4):4673-8. https://www.researchgate.net/profile/Balaji-Ganeshs/publication/348959167_Colour_Stability_of_Composite_Resins_-A_Review/links/6018d80d45851517ef31fa5e/Colour-Stability-of-Composite-Resins-A-Review.pdf

[46].  Roy Abhinab, C., Kaurani, P., Padiyar, U., Meena, S., Gupta, A., 2021, Effect of Addition of Titanium Oxide and Zirconium Oxide Nanoparticles on the Surface Roughness of Heat Cured Denture Base Resins: An In-Vitro study”, SVOA Materials Science & Technology, 3(3) Pages: 36-44, https://www.academia.edu/download/67320946/SVOA_MST_03_022.pdf

[47].  Pires, L. A., de Azevedo Silva, L. J., Ferrairo, B. M., Erbereli, R., Lovo, J. F. P., Ponce Gomes, O., Rubo, J. H., Lisboa-Filho, P. N., Griggs, J. A., Fortulan, C. A., et al., 2020, Effects of Zno/TiO2 Nanoparticle and TiO2 Nanotube Additions to Dense Polycrystalline Hydroxyapatite Bioceramic from Bovine Bones. Dent. Mater.;36, e38–e46, https://doi.org/10.1016/j.dental.2019.11.006

[48].  Felemban, N. H., Ebrahim, M. I., 2017, The Influence of Adding Modified Zirconium Oxide-Titanium Dioxide Nano-Particles on Mechanical Properties of Orthodontic Adhesive: An In Vitro Study, BMC Oral Health, 17:43, https://link.springer.com/article/10.1186/s12903-017-0332-2