Evaluation of Remineralisation Potential of an Indigenously Developed Dentifrice – An In Vitro Study

Download Article

DOI: 10.21522/TIJPH.2013.12.01.Art035

Authors : Aravind Kumar Subramanian, Nisshitha Rao Setvaji

Abstract:

White spot lesions are a regrettable but frequent side effect of orthodontic treatment that can be avoided by using dentifrices that encourage enamel remineralization. To evaluate the remineralising efficacy of an indigenously developed dentifrice containing green synthesised strontium fluorapatite nanoparticles (SrFAp NPs). SrFAp NPs were green synthesised using plant extracts of Equisetum arvense and Laminariales along with fluorine and hydroxyapatite precursors. Characterisation and cytotoxicity evaluation of the SrFAp NPs was done. Remineralising efficacy was evaluated on 30 extracted non carious teeth separated into 1 control group and 5 test groups of 5 teeth each. All samples underwent demineralisation and remineralisation. The test groups were exposed to the corresponding concentration of SrFAp NPs dentifrice. The pre and post treatment Vickers hardness test and Energy dispersive x-ray analysis were performed. Statistical analysis done using SPSS software. Characterisation and cytotoxicity tests revealed successful formation of SrFAp NPs with good cell viability. Increase in enamel hardness values seen in all test groups post treatment. Highly significant difference in enamel hardness values seen in 0.1%, 0.8% and 1% SrFAp dentifrices. EDAX analysis shows strontium uptake in all the test groups. 0.1 Wt%, 0.2 Wt%, 0.1 Wt%, 0.5 Wt%, 0.2 Wt% of Sr uptake seen in 0.1%, 0.2%, 0.4%, 0.8% and 1% SrFAp dentifrices respectively. SrFAp NPs containing dentifrices have successfully remineralised enamel leading to increased enamel hardness. EDAX shows successful uptake of strontium of highest 0.5 Wt% seen with 0.8% SrFAp NP dentifrice.

References:

1.    Marya, A., Venugopal, A., Karobari, M. I., & Rokaya, D., 2022, White Spot Lesions: A Serious but Often Ignored Complication of Orthodontic Treatment, The Open Dentistry Journal, 16(1). https://doi.org/10.2174/18742106-v16-e2202230.

2.    Whelton, H. P., Spencer, A. J., Do, L. G., & Rugg-Gunn, A. J., 2019, Fluoride Revolution and Dental Caries: Evolution of Policies for Global Use, Journal of Dental Research, 98(8), 837–846. https://doi.org/10.1177/0022034519843495.

3.    Arifa, M. K., Ephraim, R., & Rajamani, T., 2019, Recent Advances in Dental Hard Tissue Remineralization: A Review of Literature, International Journal of Clinical Pediatric Dentistry, 12(2), 139–144. https://doi.org/10.5005/jp-journals-10005-1603.

4.    Reynolds, E. C., 1997, Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions, Journal of Dental Research, 76(9), 1587–1595. https://doi.org/10.1177/00220345970760091101.

5.    Dai, L. L., Mei, M. L., Chu, C. H., & Lo, E. C. M., 2019, Mechanisms of Bioactive Glass on Caries Management: A Review, Materials, 12(24). https://doi.org/10.3390/ma12244183.

6.    Joudeh, N., & Linke, D., 2022, Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists, Journal of Nanobiotechnology, 20(1), 1–29. https://doi.org/10.1186/s12951-022-01477-8.

7.    Kontogianni, G.-I., Coelho, C., Gauthier, R., Fiorilli, S., Quadros, P., Vitale-Brovarone, C., & Chatzinikolaidou, M., 2023, Osteogenic Potential of Nano-Hydroxyapatite and Strontium-Substituted Nano-Hydroxyapatite, Nanomaterials, 13(12), 1881. https://doi.org/10.3390/nano13121881.

8.    Maliael, M. T., Jain, R. K., & Srirengalakshmi, M., 2022, Effect of nanoparticle coatings on frictional resistance of orthodontic archwires: A systematic review and meta-analysis, World, 13(4), 417-424. https://doi.org/10.5005/jp-journals-10015-2066.

9.    Kani, T., Kani, M., Isozaki, A., Shintani, H., Ohashi, T., & Tokumoto, T., 1989, Effect to apatite-containing dentifrices on dental caries in school children, Journal of Dental Health, 39(1), 104-109. https://doi.org/10.5834/jdh.39.104.

10.    Shimura, N., n.d., Field study on the anticaries effect of toothpaste containing hydroxyapatite (First Report). Shika Janaru.

11.    Vano, M., Derchi, G., Barone, A., & Covani, U., 2014, Effectiveness of nano-hydroxyapatite toothpaste in reducing dentin hypersensitivity: a double-blind randomized controlled trial, Quintessence International, 45(8), 703–711. https://doi.org/10.3290/j.qi.a32240.

12.    Najibfard, K., Ramalingam, K., Chedjieu, I., & Amaechi, B. T., 2011, Remineralization of early caries by a nano-hydroxyapatite dentifrice, The Journal of Clinical Dentistry, 22(5), 139–143. https://www.ncbi.nlm.nih.gov/pubmed/22403978.

13.    Vano, M., Derchi, G., Barone, A., Pinna, R., Usai, P., & Covani, U., 2018, Reducing dentine hypersensitivity with nano-hydroxyapatite toothpaste: a double-blind randomized controlled trial, Clinical Oral Investigations, 22(1), 313–320. https://doi.org/10.1007/s00784-017-2113-3.

14.    Schlagenhauf, U., Kunzelmann, K.-H., Hannig, C., May, T. W., Hösl, H., Gratza, M., Viergutz, G., Nazet, M., Schamberger, S., & Proff, P., 2019, Impact of a non-fluoridated microcrystalline hydroxyapatite dentifrice on enamel caries progression in highly caries-susceptible orthodontic patients: A randomized, controlled 6-month trial, Journal of Investigative and Clinical Dentistry, 10(2), e12399. https://doi.org/10.1111/jicd.12399.

15.    Paszynska, E., Pawinska, M., Gawriolek, M., Kaminska, I., Otulakowska-Skrzynska, J., Marczuk-Kolada, G., Rzatowski, S., Sokolowska, K., Olszewska, A., Schlagenhauf, U., May, T. W., Amaechi, B. T., & Luczaj-Cepowicz, E., 2021, Impact of a toothpaste with microcrystalline hydroxyapatite on the occurrence of early childhood caries: a 1-year randomized clinical trial, Scientific Reports, 11(1), 2650.

16.    Esparza-Villalpando, V., Fernandez-Hernandez, E., Rosales-Berber, M., Torre-Delgadillo, G., Garrocho-Rangel, A., & Pozos-Guillén, A., 2021, Clinical Efficacy of Two Topical Agents for the Remineralization of Enamel White Spot Lesions in Primary Teeth, Pediatric Dentistry, 43(2), 95–101. https://www.ncbi.nlm.nih.gov/pubmed/33892832.

17.    Zastulka, A., Clichici, S., Tomoaia-Cotisel, M., Mocanu, A., Roman, C., Olteanu, C.-D., Culic, B., & Mocan, T., 2023, Recent Trends in Hydroxyapatite Supplementation for Osteoregenerative Purposes, Materials, 16(3). https://doi.org/10.3390/ma16031303.

18.    Thuy, T. T., Nakagaki, H., Kato, K., Hung, P. A., Inukai, J., Tsuboi, S., Nakagaki, H., Hirose, M. N., Igarashi, S., & Robinson, C., 2008, Effect of strontium in combination with fluoride on enamel remineralization in vitro, Archives of Oral Biology, 53(11), 1017–1022. https://doi.org/10.1016/j.archoralbio.2008.06.005.

19.    Huston, M., DeBella, M., DiBella, M., & Gupta, A., 2021, Green Synthesis of Nanomaterials. Nanomaterials (Basel, Switzerland), 11(8). https://doi.org/10.3390/nano11082130.

20.    Setvaji, R. N., Subramanian, K. A., Green synthesis of strontium fluorapatite nanoparticles using extracts of equisetum arvense and Laminariales, J Complement Med Res, 022;13(5):96–101.DOI: 10.5455/jcmr.2022.13.0 5.18 10.5455/jcmr.2022.13.0 5.18.

21.    Setvaji, N. R., & Subramanian, A. K., 2024, Evaluation of Cytotoxicity of Green Synthesized Strontium Fluorapatite Nanoparticles on Human Gingival Fibroblasts: An In Vitro Study, World Journal of Dentistry, 15(1), 25-29. 10.5005/jp-journals-10015-2357.

22.    Krishnan, V., Bhatia, A., & Varma, H., 2016, Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration, Dental Materials, 32(5), 646-659. https://doi.org/10.1016/j.dental.2016.02.002.

23.    Rajendran, R., Antony, D. P., Paul, P., Ashik P, M., M, A., & Hameed, H., 2023, A Systematic Review on the Effect of Strontium-Doped Nanohydroxyapatite in Remineralizing Early Caries Lesion, Cureus, 15(8), e44176. https://doi.org/10.7759/cureus.44176.

24.    Ressler, A., Žužić, A., Ivanišević, I., Kamboj, N., & Ivanković, H., 2021, Ionic substituted hydroxyapatite for bone regeneration applications: A review, Open Ceramics, 6, 100122. https://doi.org/10.1016/j.oceram.2021.100122.

25.    Verma, P., & Muthuswamy Pandian, S., 2021, Bionic effects of nano hydroxyapatite dentifrice on demineralised surface of enamel post orthodontic debonding: in-vivo split mouth study, Progress in Orthodontics, 22, 1-8. https://doi.org/10.1186/s40510-021-00381-5.

26.    Tiwari, A., & Jain, R. K., 2023, Comparative Evaluation of White Spot Lesion incidence between NovaMin, Probiotic, And Fluoride containing Dentifrices during Orthodontic treatment Using Laser Fluorescence-A Prospective Randomized Controlled Clinical Trial, Clinical and Investigative Orthodontics, 82(2), 75-82. https://doi.org/10.1080/27705781.2023.2190950.

27.    Duraisamy, R., Ganapathy, D., & Shanmugam, R. (2021). Biocompatibility and osseointegration of nanohydroxyapatite. Int J Dentistry Oral Sci, 8(9), 4136-4139.

28.    Verma, P., & Jain, R. K. (2022). Visual Assessment of Extent of White Spot Lesions in Subjects treated with Fixed Orthodontic Appliances: A Retrospective Study. World Journal of Dentistry, 13(3), 245-249.