Evaluation of Remineralisation Potential of an Indigenously Developed Dentifrice – An In Vitro Study
Abstract:
White spot lesions are a regrettable but frequent side
effect of orthodontic treatment that can be avoided by using dentifrices that
encourage enamel remineralization. To evaluate the remineralising efficacy of
an indigenously developed dentifrice containing green synthesised strontium
fluorapatite nanoparticles (SrFAp NPs). SrFAp NPs were green synthesised using
plant extracts of Equisetum arvense and Laminariales along with fluorine and
hydroxyapatite precursors. Characterisation and cytotoxicity evaluation of the
SrFAp NPs was done. Remineralising efficacy was evaluated on 30 extracted non
carious teeth separated into 1 control group and 5 test groups of 5 teeth each.
All samples underwent demineralisation and remineralisation. The test groups
were exposed to the corresponding concentration of SrFAp NPs dentifrice. The
pre and post treatment Vickers hardness test and Energy dispersive x-ray
analysis were performed. Statistical analysis done using SPSS software.
Characterisation and cytotoxicity tests revealed successful formation of SrFAp
NPs with good cell viability. Increase in enamel hardness values seen in all
test groups post treatment. Highly significant difference in enamel hardness
values seen in 0.1%, 0.8% and 1% SrFAp dentifrices. EDAX analysis shows
strontium uptake in all the test groups. 0.1 Wt%, 0.2 Wt%, 0.1 Wt%, 0.5 Wt%,
0.2 Wt% of Sr uptake seen in 0.1%, 0.2%, 0.4%, 0.8% and 1% SrFAp dentifrices
respectively. SrFAp NPs containing dentifrices have successfully remineralised
enamel leading to increased enamel hardness. EDAX shows successful uptake of
strontium of highest 0.5 Wt% seen with 0.8% SrFAp NP dentifrice.
References:
1.
Marya, A., Venugopal, A., Karobari, M. I., &
Rokaya, D., 2022, White Spot Lesions: A Serious but Often Ignored Complication
of Orthodontic Treatment, The Open Dentistry Journal, 16(1).
https://doi.org/10.2174/18742106-v16-e2202230.
2.
Whelton, H. P., Spencer, A. J., Do, L. G., &
Rugg-Gunn, A. J., 2019, Fluoride Revolution and Dental Caries: Evolution of
Policies for Global Use, Journal of Dental Research, 98(8), 837–846.
https://doi.org/10.1177/0022034519843495.
3.
Arifa, M. K., Ephraim, R., & Rajamani, T.,
2019, Recent Advances in Dental Hard Tissue Remineralization: A Review of
Literature, International Journal of Clinical Pediatric Dentistry,
12(2), 139–144. https://doi.org/10.5005/jp-journals-10005-1603.
4.
Reynolds, E. C., 1997, Remineralization of enamel
subsurface lesions by casein phosphopeptide-stabilized calcium phosphate
solutions, Journal of Dental Research, 76(9), 1587–1595.
https://doi.org/10.1177/00220345970760091101.
5.
Dai, L. L., Mei, M. L., Chu, C. H., & Lo, E. C.
M., 2019, Mechanisms of Bioactive Glass on Caries Management: A Review, Materials,
12(24). https://doi.org/10.3390/ma12244183.
6.
Joudeh, N., & Linke, D., 2022, Nanoparticle
classification, physicochemical properties, characterization, and applications:
a comprehensive review for biologists, Journal of Nanobiotechnology,
20(1), 1–29. https://doi.org/10.1186/s12951-022-01477-8.
7.
Kontogianni, G.-I., Coelho, C., Gauthier, R.,
Fiorilli, S., Quadros, P., Vitale-Brovarone, C., & Chatzinikolaidou, M.,
2023, Osteogenic Potential of Nano-Hydroxyapatite and Strontium-Substituted
Nano-Hydroxyapatite, Nanomaterials, 13(12), 1881.
https://doi.org/10.3390/nano13121881.
8.
Maliael, M. T., Jain, R. K., & Srirengalakshmi,
M., 2022, Effect of nanoparticle coatings on frictional resistance of
orthodontic archwires: A systematic review and meta-analysis, World,
13(4), 417-424. https://doi.org/10.5005/jp-journals-10015-2066.
9.
Kani, T., Kani, M., Isozaki, A., Shintani, H.,
Ohashi, T., & Tokumoto, T., 1989, Effect to apatite-containing dentifrices
on dental caries in school children, Journal of Dental Health, 39(1),
104-109. https://doi.org/10.5834/jdh.39.104.
10.
Shimura, N., n.d., Field study on the anticaries
effect of toothpaste containing hydroxyapatite (First Report). Shika Janaru.
11.
Vano, M., Derchi, G., Barone, A., & Covani, U.,
2014, Effectiveness of nano-hydroxyapatite toothpaste in reducing dentin
hypersensitivity: a double-blind randomized controlled trial, Quintessence
International, 45(8), 703–711. https://doi.org/10.3290/j.qi.a32240.
12.
Najibfard, K., Ramalingam, K., Chedjieu, I., &
Amaechi, B. T., 2011, Remineralization of early caries by a nano-hydroxyapatite
dentifrice, The Journal of Clinical Dentistry, 22(5), 139–143.
https://www.ncbi.nlm.nih.gov/pubmed/22403978.
13.
Vano, M., Derchi, G., Barone, A., Pinna, R., Usai,
P., & Covani, U., 2018, Reducing dentine hypersensitivity with
nano-hydroxyapatite toothpaste: a double-blind randomized controlled trial, Clinical
Oral Investigations, 22(1), 313–320.
https://doi.org/10.1007/s00784-017-2113-3.
14.
Schlagenhauf, U., Kunzelmann, K.-H., Hannig, C.,
May, T. W., Hösl, H., Gratza, M., Viergutz, G., Nazet, M., Schamberger, S.,
& Proff, P., 2019, Impact of a non-fluoridated microcrystalline
hydroxyapatite dentifrice on enamel caries progression in highly
caries-susceptible orthodontic patients: A randomized, controlled 6-month
trial, Journal of Investigative and Clinical Dentistry, 10(2), e12399.
https://doi.org/10.1111/jicd.12399.
15.
Paszynska, E., Pawinska, M., Gawriolek, M.,
Kaminska, I., Otulakowska-Skrzynska, J., Marczuk-Kolada, G., Rzatowski, S.,
Sokolowska, K., Olszewska, A., Schlagenhauf, U., May, T. W., Amaechi, B. T.,
& Luczaj-Cepowicz, E., 2021, Impact of a toothpaste with microcrystalline
hydroxyapatite on the occurrence of early childhood caries: a 1-year randomized
clinical trial, Scientific Reports, 11(1), 2650.
16.
Esparza-Villalpando, V., Fernandez-Hernandez, E.,
Rosales-Berber, M., Torre-Delgadillo, G., Garrocho-Rangel, A., &
Pozos-Guillén, A., 2021, Clinical Efficacy of Two Topical Agents for the
Remineralization of Enamel White Spot Lesions in Primary Teeth, Pediatric
Dentistry, 43(2), 95–101. https://www.ncbi.nlm.nih.gov/pubmed/33892832.
17.
Zastulka, A., Clichici, S., Tomoaia-Cotisel, M.,
Mocanu, A., Roman, C., Olteanu, C.-D., Culic, B., & Mocan, T., 2023, Recent
Trends in Hydroxyapatite Supplementation for Osteoregenerative Purposes, Materials,
16(3). https://doi.org/10.3390/ma16031303.
18.
Thuy, T. T., Nakagaki, H., Kato, K., Hung, P. A.,
Inukai, J., Tsuboi, S., Nakagaki, H., Hirose, M. N., Igarashi, S., &
Robinson, C., 2008, Effect of strontium in combination with fluoride on enamel
remineralization in vitro, Archives of Oral Biology, 53(11), 1017–1022.
https://doi.org/10.1016/j.archoralbio.2008.06.005.
19.
Huston, M., DeBella, M., DiBella, M., & Gupta,
A., 2021, Green Synthesis of Nanomaterials. Nanomaterials (Basel, Switzerland),
11(8). https://doi.org/10.3390/nano11082130.
20.
Setvaji, R. N., Subramanian, K. A., Green synthesis
of strontium fluorapatite nanoparticles using extracts of equisetum arvense and
Laminariales, J Complement Med Res, 022;13(5):96–101.DOI:
10.5455/jcmr.2022.13.0 5.18 10.5455/jcmr.2022.13.0 5.18.
21.
Setvaji, N. R., & Subramanian, A. K., 2024,
Evaluation of Cytotoxicity of Green Synthesized Strontium Fluorapatite
Nanoparticles on Human Gingival Fibroblasts: An In Vitro Study, World
Journal of Dentistry, 15(1), 25-29. 10.5005/jp-journals-10015-2357.
22.
Krishnan, V., Bhatia, A., & Varma, H., 2016,
Development, characterization and comparison of two strontium doped nano
hydroxyapatite molecules for enamel repair/regeneration, Dental Materials,
32(5), 646-659. https://doi.org/10.1016/j.dental.2016.02.002.
23.
Rajendran, R., Antony, D. P., Paul, P., Ashik P,
M., M, A., & Hameed, H., 2023, A Systematic Review on the Effect of
Strontium-Doped Nanohydroxyapatite in Remineralizing Early Caries Lesion, Cureus,
15(8), e44176. https://doi.org/10.7759/cureus.44176.
24.
Ressler, A., Žužić, A., Ivanišević, I., Kamboj, N.,
& Ivanković, H., 2021, Ionic substituted hydroxyapatite for bone
regeneration applications: A review, Open Ceramics, 6, 100122.
https://doi.org/10.1016/j.oceram.2021.100122.
25.
Verma, P., & Muthuswamy Pandian, S., 2021,
Bionic effects of nano hydroxyapatite dentifrice on demineralised surface of
enamel post orthodontic debonding: in-vivo split mouth study, Progress in
Orthodontics, 22, 1-8. https://doi.org/10.1186/s40510-021-00381-5.
26.
Tiwari, A., & Jain, R. K., 2023, Comparative
Evaluation of White Spot Lesion incidence between NovaMin, Probiotic, And
Fluoride containing Dentifrices during Orthodontic treatment Using Laser
Fluorescence-A Prospective Randomized Controlled Clinical Trial, Clinical
and Investigative Orthodontics, 82(2), 75-82.
https://doi.org/10.1080/27705781.2023.2190950.
27.
Duraisamy, R., Ganapathy, D., & Shanmugam, R.
(2021). Biocompatibility and osseointegration of nanohydroxyapatite. Int J
Dentistry Oral Sci, 8(9), 4136-4139.
28.
Verma, P., & Jain, R. K. (2022). Visual
Assessment of Extent of White Spot Lesions in Subjects treated with Fixed
Orthodontic Appliances: A Retrospective Study. World Journal of Dentistry,
13(3), 245-249.