Molecular Docking of Phytochemicals from Adhatoda vasica Against Caries, Periodontitis and Inflammatory Mediators – A Computational Study
Abstract:
Orthodontic treatment is associated
with pain, difficulty in plaque control, caries incidence, and slow movement of
teeth. Authors hypothesize that the answer to these questions may lie in
phytochemicals which are a huge unexplored area. Due to previous reports on Adhathoda
vasica about its anti-inflammatory and antimicrobial properties, its use in
orthodontics is explored in the dry lab scenario. This can be considered as a
preliminary step to study the herb in great detail for use in orthodontic
therapy. Computational algorithms from Auto Dock version 4 were used in the
study. Vasicine, Vasinone, Vasicoline and Anisotine were analysed against
Glucosyltransferase (GFT) of Streptococcus mutans, Gingipain K - Porphyromonas
gingivalis, FIM A of Porphyromonas gingivalis, TNF ALPHA and Prostaglandin H
synthases. Compounds exerted promising inhibiting action against Streptococcus
mutans, Gingipain K, FimA, TNF-alpha and prostaglandin E2. The said
phytochemicals - Vasicine, Vasicinone, Vasicoline and Anisotine can further be
explored for proper delivery to saliva, periodontal region and to bone for
effective use during and after orthodontic treatment.
References:
[1] Strauss, F. J., Espinoza, I., Stähli, A., Baeza, M., Cortés, R.,
Morales, A., & Gamonal, J., 2019, Dental caries is associated with severe
periodontitis in Chilean adults: A cross-sectional study, BMC Oral Health,
19(1), 278. https://doi.org/10.1186/s12903-019-0975-2.
[2] Manji, F., Dahlen, G., & Fejerskov, O., 2018, Caries and
periodontitis: Contesting the conventional wisdom on their aetiology, Caries
Research, 52(6), 548–564. https://doi.org/10.1159/000488948.
[3] Worthington, H. V., MacDonald, L., Poklepovic Pericic, T., Sambunjak,
D., Johnson, T. M., Imai, P., & Clarkson, J. E., 2019, Home use of
interdental cleaning devices, in addition to toothbrushing, for preventing and
controlling periodontal diseases and dental caries, Cochrane Database of
Systematic Reviews, 4(4), CD012018. https://doi.org/10.1002/14651858.CD012018.pub2.
[4] Tartaglia, G. M., Tadakamadla, S. K., Connelly, S. T., Sforza, C., &
Martín, C., 2019, Adverse events associated with home use of mouthrinses: A
systematic review, Therapeutic Advances in Drug Safety, 10,
2042098619854881. https://doi.org/10.1177/2042098619854881.
[5] Kazancı, F., Aydoğan, C., & Alkan, Ö., 2016, Patients’ and parents’
concerns and decisions about orthodontic treatment, Korean Journal of
Orthodontics, 46(1), 20–26. https://doi.org/10.4041/kjod.2016.46.1.20.
[6] Monk, A. B., Harrison, J. E., Worthington, H. V., & Teague, A., 2017,
Pharmacological interventions for pain relief during orthodontic treatment, Cochrane
Database of Systematic Reviews, 11(11), CD003976. https://doi.org/10.1002/14651858.CD003976.pub2.
[7] Trott, O., & Olson, A. J., 2010, AutoDock Vina: Improving the speed
and accuracy of docking with a new scoring function, efficient optimization,
and multithreading, Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.
[8] Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., &
Olson, A. J., 2016, Computational protein-ligand docking and virtual drug
screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051.
[9] Osterberg, F., Morris, G. M., Sanner, M. F., Olson, A. J., &
Goodsell, D. S., 2002, Automated docking to multiple target structures:
Incorporation of protein mobility and structural water heterogeneity in
AutoDock. Proteins, 46(1), 34–40. https://doi.org/10.1002/prot.10028.
[10] Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E.,
Belew, R. K., & Olson, A. J., 1998, Automated docking using a Lamarckian
genetic algorithm and an empirical binding free energy function, Journal of
Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096
987X(19981115)19:14<1639::AID JCC10>3.0.CO;2-B.
[11] Zhang, Q., Nijampatnam, B., Hua, Z., Nguyen, T., Zou, J., Cai, X.,
Michalek, S. M., Velu, S. E., & Wu, H., 2017, Structure-based discovery of
small molecule inhibitors of cariogenic virulence. Scientific Reports,
7(1), 5974. https://doi.org/10.1038/s41598-017-06168-1.
[12] Solis, F. J., & Wets, R. J.-B., 1981, Minimization by random search
techniques. Mathematics of Operations Research, 6(1), 19–30. https://doi.org/10.1287/moor.6.1.19.
[13] Bikadi, Z., & Hazai, E., 2009, Application of the PM6 semi-empirical
method to modeling proteins enhances docking accuracy of AutoDock. Journal
of Cheminformatics, 1, 15. https://doi.org/10.1186/1758-2946-1-15.
[14] Halgren, T. A., 1998, Merck molecular force field. I. Basis, form,
scope, parametrization, and performance of MMFF94, Journal of Computational
Chemistry, 17(5–6), 490–519.
[15] Sivaraman, D., Pradeep, P. S., Manoharan, S. S., Ramachandra Bhat, C.,
Leela, K. V., & Venugopal, V., 2020, Revealing potential binding affinity
of FDA approved therapeutics targeting Main protease (3CLpro) in impairing
novel coronavirus (SARS-CoV-2) replication that causes COVID-19. Coronaviruses,
1, 1–9.
[16] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K.,
Goodsell, D. S., & Olson, A. J., 2009, AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. Journal of
Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256.
[17] Ren, Z., Chen, L., Li, J., & Li, Y., 2016, Inhibition of Streptococcus mutans polysaccharide
synthesis by molecules targeting glycosyltransferase activity, Journal of
Oral Microbiology, 8, 31095. https://doi.org/10.3402/jom.v8.31095.
[18] Guevara, T., Rodríguez-Banqueri, A., Lasica, A. M., Ksiazek, M.,
Potempa, B. A., Potempa, J., & Gomis-Rüth, F. X., 2019, Structural
determinants of inhibition of Porphyromonas
gingivalis gingipain K by KYT-36, a potent, selective, and bioavailable
peptidase inhibitor, Scientific Reports, 9(1), 4935. https://doi.org/10.1038/s41598-019-41354-3.
[19] Rodrigues, R. S., Silveira, V. R., & Rego, R. O., 2020, Analysis of Porphyromonas gingivalis fimA genotypes
in severe periodontitis patients, Brazilian Oral Research, 34, e090. https://doi.org/10.1590/1807-3107bor-2020.vol34.0090.
[20] K versus S., 2014, The effect of scaling and root planing on glycaemic
control, periodontal status and gingival crevicular fluid TNF-α levels in an
Indian population- to reveal the ambivalent link, Journal of Clinical and
Diagnostic Research, 8(11), ZC22–ZC26. https://doi.org/10.7860/JCDR/2014/9490.5115.
[21] Båge, T., 2011, Prostaglandin E synthases in periodontitis-affected
gingival tissue and in gingival fibroblasts, Karolinska Institutet.