Synthesis, Characterisation, and in Vitro Biocompatibility Studies of Selenium Nanoparticles Synthesized using Hybanthus Enneaspermus Plant Extract for Potential Biomedical Applications

Download Article

DOI: 10.21522/TIJPH.2013.SE.23.01.Art003

Authors : Vishnu Priya Veeraraghavan, Aardra Binithadas Segin Chandran, Hema Priya Manivannan, Gayathri R, Kavitha S

Abstract:

Hybanthus enneaspermus (HE) is a traditional medicinal plant used for treating various disease conditions. Selenium nanoparticles (SeNPs) possess various properties such as anticancer, antioxidant, etc. The objective of the present study is to conduct green synthesis of selenium nanoparticles using Hybanthus enneaspermus(HE) and evaluate their biocompatibility. Leaves of HE are utilized for synthesizing SeNPs. Characterization studies of HE-SeNPs are carried out using UV spectrophotometry, FT-IR spectroscopy, and SEM. To check the biocompatibility, hemolytic assay, and Annexin V-PI assays are carried out. A change in color is observed after the addition of sodium selenite to the leaf extract. UV spectrophotometry gives a peak at 271 nm confirming the synthesis of SeNPs. FT-IR gives peaks at 3224, 1565, 1399, 1078, 784, and 717 cm-1 with a fingerprint of 3500 - 1000 cm-1. SEM analysis shows the spherical morphology of the SeNPs. HE-SeNPs at lower concentrations cause less hemolysis. However, HE-SeNPs are found to be less biocompatible, so further studies are needed to confirm their biocompatible nature. SeNPs synthesized from HE can be ideal for biomedical applications but further studies are required to check its biocompatibility.

Keywords: SeNPs, Hybanthus enneaspermus, green synthesis, biocompatibility.

References:

[1] Wacker, M. G. (2014). Nanotherapeutics—Product Development Along the “Nanomaterial” Discussion. Journal of pharmaceutical sciences, 103(3), 777–784. https://doi.org/10.1002/jps.23879.

[2] Abbasian, R., & Jafarizadeh-Malmiri, H. (2020). Green approach in gold, silver and selenium nanoparticles using coffee bean extract. Open Agriculture, 5(1), 761–767. https://doi.org/10.1515/opag-2020-0074.

[3] Fardsadegh, B., & Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their In vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis, 8(1), 399–407. https://doi.org/10.1515/gps-2019-0007.

[4] Nasim, I., Rajeshkumar, S., & Vishnupriya, V. (2021). Green synthesis of reduced graphene oxide nanoparticles, its characterization, and antimicrobial properties against common oral pathogens. Int J Dentistry Oral Sci., 8(2), 1670–1675.

[5] Nasim, I., Rajesh Kumar, S., Vishnupriya, V., & Jabin, Z. (2020). Cytotoxicity and anti-microbial analysis of silver and graphene oxide bio nanoparticles. Bioinformation, 16(11), 831–836. https://doi.org/10.6026/97320630016831.

[6] Fritea, L., Laslo, V., Cavalu, S., Costea, T., & Vicas, S. I. (2017). Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Studia Universitatis” Vasile Goldis” Arad. Seria Stiintele Vietii (Life Sciences Series), 27(3), 203–208. Retrieved from http://www.studiauniversitatis.ro/pdf/27-%202017/27-3-2017/7-%20SUVG-27-3-%20L.F.-%20203-208.pdf.

[7] Kishore, S. O. G., Priya, A. J., & Narayanan, L. (n.d.). Controlling of oral pathogens using turmeric and tulsi herbal formulation mediated copper nanoparticles. Plant cell biotechnology and molecular biology.

[8] Rieshy, V., Priya, J., Arivarasu, L., & Kumar, S. R. (n.d.). Enhanced Antimicrobial Activity of Herbal Formulation Mediated Copper Nanoparticles Against Clinical Pathogens. The Plant cell.

[9] Rajeshkumar, S., & Lakshmi, S. (2021). Anticariogenic activity of silver nanoparticles synthesized using fresh leaves extract of kalanchoe pinnata. . Int J Dentistry Oral Sci., 8(7), 2985–2987.

[10] Rajeshkumar, S., Lakshmi, T., & Tharani, M. (2021). Green synthesis of copper nanoparticles synthesized using black tea and its antibacterial activity against oral pathogens. Int. J. Dent. Oral Sci., 8(9), 4156–4159.

[11] Maheswari, T. N. U., & Dhanvanth, M. (2022). Topical herbal therapeutic formulation used in the management of oral potentially malignant disorders – A systematic review. Journal of Indian Academy of Oral Medicine and Radiology, 34(2), 223. https://doi.org/10.4103/jiaomr.jiaomr_101_21.

[12] Radomska, D., Czarnomysy, R., Radomski, D., Bielawska, A., & Bielawski, K. (2021). Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity. Nutrients, 13(5). https://doi.org/10.3390/nu13051649

[13] Souza, L. M. dos S., Dibo, M., Sarmiento, J. J. P., Seabra, A. B., Medeiros, L. P., Lourenço, I. M., … Nakazato, G. (2022). Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Current Research in Green and Sustainable Chemistry, 5, 100303. https://doi.org/10.1016/j.crgsc.2022.100303.

[14] Johnson, J., Shanmugam, R., & Lakshmi, T. (2022). A review on plant-mediated selenium nanoparticles and its applications. Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharamcologie clinique, 28(2), e29–e40. https://doi.org/10.47750/jptcp.2022.870.

[15] Mi, X.-J., Choi, H. S., Perumalsamy, H., Shanmugam, R., Thangavelu, L., Balusamy, S. R., & Kim, Y.-J. (2022). Biosynthesis and cytotoxic effect of silymarin-functionalized selenium nanoparticles induced autophagy mediated cellular apoptosis via downregulation of PI3K/Akt/mTOR pathway in gastric cancer. Phytomedicine: international journal of phytotherapy and phytopharmacology, 99, 154014. https://doi.org/10.1016/j.phymed.2022.154014.

[16] Sneka, & Santhakumar, P. (2021). Antibacterial Activity of Selenium Nanoparticles extracted from Capparis decidua against Escherichia coli and Lactobacillus Species. Journal of advanced pharmaceutical technology & research, 14(8), 4452–4454. https://doi.org/10.52711/0974-360x.2021.00773.

[17] Pandiyan, I., Sri, S. D., Indiran, M. A., Rathinavelu, P. K., Prabakar, J., & Rajeshkumar, S. (2022). Antioxidant, anti-inflammatory activity of Thymus vulgaris-mediated selenium nanoparticles: An in vitro study. Journal of conservative dentistry: JCD, 25(3), 241–245. https://doi.org/10.4103/JCD.JCD_369_21.

[18] Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., … Kizek, R. (2018). Nano-selenium and its nanomedicine applications: a critical review. International journal of nanomedicine, 13, 2107–2128. https://doi.org/10.2147/IJN.S157541.

[19] Benstoem, C., Goetzenich, A., Kraemer, S., Borosch, S., Manzanares, W., Hardy, G., & Stoppe, C. (2015). Selenium and its supplementation in cardiovascular disease--what do we know? Nutrients, 7(5), 3094–3118. https://doi.org/10.3390/nu7053094.

[20] Kamath, K. A., Nasim, I., & Rajeshkumar, S. (2020). Evaluation of the re-mineralization capacity of a gold nanoparticle-based dental varnish: An in vitro study. Journal of conservative dentistry: JCD, 23(4), 390–394.

[21] Nasim, I., Jabin, Z., Kumar, S. R., & Vishnupriya, V. (2022). Green synthesis of calcium hydroxide-coated silver nanoparticles using Andrographis paniculata and Ocimum sanctum Linn. leaf extracts: An antimicrobial and cytotoxic activity. Journal of conservative dentistry: JCD, 25(4), 369–374. https://doi.org/10.4103/jcd.jcd_411_21.

[22] Wadhwani, S. A., Gorain, M., Banerjee, P., Shedbalkar, U. U., Singh, R., Kundu, G. C., & Chopade, B. A. (2017). Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. International journal of nanomedicine, 12, 6841–6855. https://doi.org/10.2147/IJN.S139212.

[23] Faramarzi, S., Anzabi, Y., & Jafarizadeh-Malmiri, H. (2020). Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Archives of microbiology, 202(5), 1203–1209. https://doi.org/10.1007/s00203-020-01831-0.

[24] Maliael, M. T., Jain, R. K., & Srirengalakshmi, M. (2022). Effect of nanoparticle coatings on frictional resistance of orthodontic archwires: a systematic review and meta-analysis. World J. Dent, 13(4), 417–424. Retrieved from https://www.wjoud.com/abstractArticleContentBrowse/WJOUD/28479/JPJ/fullText.

[25] Sushanthi, S., Srisakthi, D., MeignanaArumugham, I., Pradeepkumar, R., & Rajeshkumar, S. (2021). Vernonia Amygdalina Mediated Copper Nanoparticles and its Characterization and Antimicrobial Activity - An In Vitro Study. Int J Dentistry Oral Sci., 8(7), 3330–3334.

[26] Shekhawat, M. S., & Manokari, M. (2018). In vitro multiplication, micromorphological studies and ex vitro rooting of Hybanthus enneaspermus (L.) F. Muell. – a rare medicinal plant. Acta Botanica Croatica. https://doi.org/10.1515/botcro-2017-0012.

[27] Patel, D. K., Kumar, R., Laloo, D., & Hemalatha, S. (2011). Evaluation of phytochemical and antioxidant activities of the different fractions of Hybanthus enneaspermus (Linn.) F. Muell. (Violaceae). Asian Pacific journal of tropical medicine, 4(5), 391–396. https://doi.org/10.1016/S1995-7645(11)60110-7.

[28] Patel, D. K., Kumar, R., Prasad, S. K., Sairam, K., & Hemalatha, S. (2011). Antidiabetic and in vitro antioxidant potential of Hybanthus enneaspermus (Linn) F. Muell in streptozotocin-induced diabetic rats. Asian Pacific journal of tropical biomedicine, 1(4), 316–322. https://doi.org/10.1016/S2221-1691(11)60051-8.

[29] Patel, D. K., Kumar, R., Sairam, K., & Hemalatha, S. (2013). Hybanthus enneaspermus (L.) F. Muell: a concise report on its phytopharmacological aspects. Chinese journal of natural medicines, 11(3), 199–206. https://doi.org/10.1016/S1875-5364(13)60017-5.

[30] Tripathy, S., Sahoo, S. P., Pradhan, D., Sahoo, S., & Satapathy, D. K. (2009). Evaluation of anti arthritic potential of Hybanthus enneaspermus. Retrieved February 6, 2023, from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b493b471da54de812289586c9fe53948b45e25f6.

[31] Anand, T., & Gokulakrishnan, K. (2012). Phytochemical analysis of Hybanthus enneaspermus using UV, FTIR and GC-MS. IOSR Journal of Pharmacy, 2(3), 520–524. Retrieved from https://www.researchgate.net/profile/Anand_Thirupathi2/publication/266286276_Phytochemical_analysis_of_hybanthus_enneaspermus_using_UV_FTIR_and_GC-_MS/links/55808d8808ae47061e5f3311.pdf.

[32] Rajsekhar, P. B., Bharani, R. S. A., Angel, K. J., Ramachandran, M., & Rajsekhar, S. P. V. (2016). Hybanthus enneaspermus (L) F. Muell: A phytopharmacological review on herbal medicine. Journal of chemical and pharmaceutical research, 8(1), 351–355.

[33] Hemalatha, S., Wahi, A. K., Singh, P. N., & Chansouria, J. P. N. (2003). Anticonvulsant and free radical scavenging activity of Hybanthus enneaspermus: A preliminary screening. Indian journal of traditional knowledge. Retrieved from http://nopr.niscpr.res.in/handle/123456789/25972.

[34] Weniger, B., Lagnika, L., Vonthron-Sénécheau, C., Adjobimey, T., Gbenou, J., Moudachirou, M., … Sanni, A. (2004). Evaluation of ethnobotanically selected Benin medicinal plants for their in vitro antiplasmodial activity. Journal of ethnopharmacology, 90(2-3), 279–284. https://doi.org/10.1016/j.jep.2003.10.002.

[35] Francis, A. P., Gurudevan, S., & Jayakrishnan, A. (2018). Synthetic polymannose as a drug carrier: synthesis, toxicity and anti-fungal activity of polymannose-amphotericin B conjugates. Journal of biomaterials science. Polymer edition, 29(13), 1529–1548. https://doi.org/10.1080/09205063.2018.1469186.

[36] Anu, K., Singaravelu, G., Murugan, K., & Benelli, G. (2017). Green-Synthesis of Selenium Nanoparticles Using Garlic Cloves (Allium sativum): Biophysical Characterization and Cytotoxicity on Vero Cells. Journal of Cluster Science, 28(1), 551–563. https://doi.org/10.1007/s10876-016-1123-7.

[37] Alagesan, V., & Venugopal, S. (2019). Green Synthesis of Selenium Nanoparticle Using Leaves Extract of Withania somnifera and Its Biological Applications and Photocatalytic Activities. BioNanoScience, 9(1), 105–116. https://doi.org/10.1007/s12668-018-0566-8.