Sativoside Mitigates High-Fat Diet-Induced Inflammation and Type-2 Diabetes in Adipose Tissue of Wistar Rats
Abstract:
References:
[1]
Farag YM, Gaballa MR. Diabesity:
an overview of a rising epidemic. Nephrol Dial Transplant. 2011 Jan;26(1):28-35.
doi: 10.1093/ndt/gfq576. Epub 2010 Nov 2. PMID: 21045078.
[2]
Xu G, Liu B, Sun Y, Du Y,
Snetselaar LG, Hu FB, Bao W. Prevalence of diagnosed type 1 and type 2 diabetes
among US adults in 2016 and 2017: population based study. BMJ. 2018 Sep 4;362:k1497.
doi: 10.1136/bmj.k1497. PMID: 30181166; PMCID: PMC6122253.
[3]
Prasad M, Rajagopal P, Devarajan
N, Veeraraghavan VP, Palanisamy CP, Cui B, Patil S, Jayaraman S. A comprehensive
review on high -fat diet-induced diabetes mellitus: an epigenetic view. J Nutr
Biochem. 2022 Sep;107:109037. doi: 10.1016/j.jnutbio.2022.109037. Epub 2022
May 6. PMID: 35533900.
[4]
Prasad M, Jayaraman S, Natarajan
SR, Veeraraghavan VP, Krishnamoorthy R, Gatasheh MK, Palanisamy CP, Elrobh M. Piperine
modulates IR/Akt/GLUT4 pathways to mitigate insulin resistance: Evidence from animal
and computational studies. Int J Biol Macromol. 2023 Dec 31;253(Pt 5):127242.
doi: 10.1016/j.ijbiomac.2023.127242. Epub 2023 Oct 4. PMID: 37797864.
[5]
Kiruthigha T, Gayathri R,
Vishnu Priya V, Selvaraj J, Kavitha, S. Piperine Modulates High Fat Diet - Induced
Renal Damage by Regulating Kim-1 and Igf-1 Beta Signaling Molecules in Male Wistar
Rats”. J. Adv. Zool. 2023 44 (S5):246-54.
[6]
Zhang P, Zhang X, Brown J,
Vistisen D, Sicree R, Shaw J, Nichols G. Global healthcare expenditure on diabetes
for 2010 and 2030. Diabetes Res Clin Pract. 2010 Mar;87(3):293-301. doi: 10.1016/j.diabres.2010.01.026.
Epub 2010 Feb 19. Erratum in: Diabetes Res Clin Pract. 2011 May;92(2):301. PMID:
20171754.
[7]
Lozano I, Van der Werf R,
Bietiger W, Seyfritz E, Peronet C, Pinget M, Jeandidier N, Maillard E, Marchioni
E, Sigrist S, Dal S. High-fructose and high-fat diet-induced disorders in rats:
impact on diabetes risk, hepatic and vascular complications. Nutr Metab (Lond).
2016 Feb 25;13:15. doi: 10.1186/s12986-016-0074-1. PMID: 26918024; PMCID: PMC4766713.
[8]
Goyal SK, Samsher, Goyal RK.
Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr.
2010 Feb;61(1):1-10. doi: 10.3109/09637480903193049. PMID: 19961353.
[9]
Samuel P, Ayoob KT, Magnuson
BA, Wölwer-Rieck U, Jeppesen PB, Rogers PJ, Rowland I, Mathews R. Stevia Leaf to
Stevia Sweetener: Exploring Its Science, Benefits, and Future Potential. J Nutr.
2018 Jul 1;148(7):1186S-1205S. doi: 10.1093/jn/nxy102. PMID: 29982648.
[10]
Orellana-Paucar AM. Steviol
Glycosides from Stevia rebaudiana: An Updated Overview of Their Sweetening Activity,
Pharmacological Properties, and Safety Aspects. Molecules. 2023 Jan 27;28(3):1258.
doi: 10.3390/molecules28031258. PMID: 36770924; PMCID: PMC9920402.
[11]
Barriocanal LA, Palacios M,
Benitez G, Benitez S, Jimenez JT, Jimenez N, Rojas V. Apparent lack of pharmacological
effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated
exposures in some normotensive and hypotensive individuals and in Type 1 and Type
2 diabetics. Regul Toxicol Pharmacol. 2008 Jun;51(1):37-41. doi: 10.1016/j.yrtph.2008.02.006.
Epub 2008 Mar 5. PMID: 18397817.
[12]
Carrera-Lanestosa A, Moguel-Ordóñez
Y, Segura-Campos M. Stevia rebaudiana Bertoni: A Natural Alternative for Treating
Diseases Associated with Metabolic Syndrome. J Med Food. 2017 Oct;20(10):933-943.
doi: 10.1089/jmf.2016.0171. Epub 2017 Aug 9. PMID: 28792778; PMCID: PMC5651958.
[13]
Ruiz-Ruiz JC, Moguel-Ordoñez
YB, Segura-Campos MR. Biological activity of Stevia rebaudiana Bertoni and their
relationship to health. Crit Rev Food Sci Nutr. 2017 Aug 13;57(12):2680-2690.
doi: 10.1080/10408398.2015.1072083. PMID: 26479769.
[14]
Lemus-Mondaca R, Vega-Gálvez
A, Zura-Bravo L, Ah-Hen K. Stevia rebaudiana Bertoni, source of a high-potency natural
sweetener: A comprehensive review on the biochemical, nutritional, and functional
aspects. Food Chem. 2012 Jun 1;132(3):1121-1132. doi: 10.1016/j.foodchem.2011.11.140.
Epub 2011 Dec 13. PMID: 29243591.
[15]
Thana Lakshme, P.S., Gayathri,
R., Vishnu Priya V. Preliminary Phytochemical Screening and Estimation of Total
Phenolic Content of Aqueous Cladode Extract of Opuntia dilleniid. J. Res. Med.
Dent. Sci. 2021 9(2): 254-257.
[16]
Mithil Vora, Vishnu Priya
V, Selvaraj J, Gayathri R, Kavitha S. Effect of Lupeol on proinflammatory Markers
in Adipose Tissue of High-Fat Diet and Sucrose Induced Type-2 Diabetic Rats. J.
Res. Med. Dent. Sci. 2021 9(10):116-121.
[17]
Vishaka S, Sridevi G, Selvaraj
J. An in vitro analysis on the antioxidant and anti-diabetic properties of Kaempferia
galanga rhizome using different solvent systems. J Adv Pharm Technol Res.
2022 Dec;13(Suppl 2):S505-S509. doi: 10.4103/japtr.japtr_189_22. Epub 2022 Dec 30.
PMID: 36798576; PMCID: PMC9926592.
[18]
Skovsø S. Modeling type 2
diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig.
2014 Jul;5(4):349-58. doi: 10.1111/jdi.12235. Epub 2014 May 19. PMID: 25411593;
PMCID: PMC4210077.
[19]
Holmes A, Coppey LJ, Davidson
EP, Yorek MA. Rat Models of Diet-Induced Obesity and High Fat/Low Dose Streptozotocin
Type 2 Diabetes: Effect of Reversal of High Fat Diet Compared to Treatment with
Enalapril or Menhaden Oil on Glucose Utilization and Neuropathic Endpoints. J
Diabetes Res. 2015;2015:307285. doi: 10.1155/2015/307285. Epub 2015 Jul 2. PMID:
26229968.
[20]
Dev Arora, Gayathri R, Selvaraj
J, Vishnu Priya V, Kavitha S. Vitamin C and E Down Regulates the Expression of C-JNK,
IKKB, NF-kB in Adipose Tissue of PCB-Exposed Rats. J. Res. Med. Dent. Sci.
2021 9(11):39-44.
[21]
Khan, HLA, Sridevi G, Selvaraj
J, Preetha S. In vitro Anti-inflammatory Properties in Various Extracts (Ethanol,
Chloroform and Aqueous) of Kaempferia galanga Linn Rhizome. J. Pharm. Res. Int.
2021 33 (47B): 476–481. DOI:https://doi.org/10.9734/jpri/2021/v33i47B33146.
[22]
McGuinness OP, Ayala JE, Laughlin
MR, Wasserman DH. NIH experiment in centralized mouse phenotyping: the Vanderbilt
experience and recommendations for evaluating glucose homeostasis in the mouse.
Am J Physiol Endocrinol Metab. 2009 Oct;297(4):E849-55. doi: 10.1152/ajpendo.90996.2008.
Epub 2009 Jul 28. PMID: 19638507; PMCID: PMC2763792.
[23]
Nagy C, Einwallner E. Study
of In Vivo Glucose Metabolism in High-fat Diet-fed Mice Using Oral Glucose Tolerance
Test (OGTT) and Insulin Tolerance Test (ITT). J Vis Exp. 2018 Jan 7;(131):56672.
doi: 10.3791/56672. PMID: 29364280; PMCID: PMC5908452.
[24]
Andrikopoulos S, Blair AR,
Deluca N, Fam BC, Proietto J. Evaluating the glucose tolerance test in mice. Am
J Physiol Endocrinol Metab. 2008 Dec;295(6):E1323-32. doi: 10.1152/ajpendo.90617.2008.
Epub 2008 Sep 23. PMID: 18812462.
[25]
Akifa Begum, Palati Sinduja,
Priyadharshini R, Selvaraj Jayaraman. Estimation of Clinocopathological Correlation
and Comparison of Salivary TNF-α among Normal and Post Radiotherapy Patients of
Oral cancer-A Cross-Sectional Study. J. Res. Med. Dent. Sci. 2021 9(10):
92-97.
[26]
Fathima Hinaz Z, Gayathri
R, Selvaraj J, Vishnu Priya V, Kavitha, S, Gayathri R. Comparative Evaluation of
Anti-Cholesterol Potential of Apple Cider Vinegar and Its Herbal Formulation with
Allium Sativum and Honey-An In-Vitro Assay. J. Res. Med. Dent. Sci. 2021
9 (10),142-147.
[27]
Logan IE, Bobe G, Miranda
CL, Vasquez-Perez S, Choi J, Lowry MB, Sharpton TJ, Morgun A, Maier CS, Stevens
JF, Shulzhenko N, Gombart AF. Germ-Free Swiss Webster Mice on a High-Fat Diet Develop
Obesity, Hyperglycemia, and Dyslipidemia. Microorganisms. 2020 Apr 5;8(4):520. doi:
10.3390/microorganisms8040520. PMID: 32260528; PMCID: PMC7232377.
[28]
Rotimi SO, Rotimi OA, Adelani
IB, Onuzulu C, Obi P, Okungbaye R. Stevioside modulates oxidative damage in the
liver and kidney of high fat/low streptozocin diabetic rats. Heliyon. 2018 May 31;4(5):e00640.
doi: 10.1016/j.heliyon.2018.e00640. PMID: 29872771; PMCID: PMC5986550.
[29]
Mounithaa N, Gayathri R, Selvaraj
Jayaraman, Vishnu Priya V, Kavitha S. Effect of Piperine on an Nrf2/Keap 1 Signalling
Mechanism in Adipose Tissue of High Fat Diet and Sucrose-Induced Experimental Diabetic
Rats. J. Adv. Zool. 2023 44 (S5):232-39.
[30]
Zhao RZ, Jiang S, Zhang L,
Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review).
Int J Mol Med. 2019 Jul;44(1):3-15. doi: 10.3892/ijmm.2019.4188. Epub 2019
May 8. PMID: 31115493; PMCID: PMC6559295.
[31]
Padmapriya, A., Preetha, S.,
Selvaraj, J., Sridevi, G. (2022). Effect of Carica papaya seed extract on IL-6 and
TNF-α in human lung cancer cell lines-an In vitro study. Res J Pharm Technol.
2022 15 (12): 5478-5482.
[32]
Deng Y, Scherer PE. Adipokines
as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci.
2010 Nov;1212:E1-E19. doi: 10.1111/j.1749-6632.2010.05875.x. Erratum in: Ann
N Y Acad Sci. 2011 May;1226(1):50. PMID: 21276002; PMCID: PMC3075414.
[33]
Kwon H, Pessin JE. Adipokines
mediate inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013 Jun
12;4:71. doi: 10.3389/fendo.2013.00071. PMID: 23781214; PMCID: PMC3679475.
[34]
Jung UJ, Choi MS. Obesity
and its metabolic complications: the role of adipokines and the relationship between
obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver
disease. Int J Mol Sci. 2014 Apr 11;15(4):6184-223. doi: 10.3390/ijms15046184.
PMID: 24733068; PMCID: PMC4013623.
[35]
Deenadayalan A, Subramanian
V, Paramasivan V, Veeraraghavan VP, Rengasamy G, Coiambatore Sadagopan J, Rajagopal
P, Jayaraman S. Stevioside Attenuates Insulin Resistance in Skeletal Muscle by Facilitating
IR/IRS-1/Akt/GLUT 4 Signaling Pathways: An In Vivo and In Silico Approach. Molecules.
2021 Dec 20;26(24):7689. doi: 10.3390/molecules26247689. PMID: 34946771; PMCID:
PMC8707280.
[36]
Jayaraman S, Krishnamoorthy
K, Prasad M, Veeraraghavan VP, Krishnamoorthy R, Alshuniaber MA, Gatasheh MK, Elrobh
M, Gunassekaran. Glyphosate potentiates insulin resistance in skeletal muscle through
the modulation of IRS-1/PI3K/Akt mediated mechanisms: An in vivo and in silico analysis.
Int J Biol Macromol. 2023 Jul 1;242(Pt 2):124917. doi: 10.1016/j.ijbiomac.2023.124917.
Epub 2023 May 18. PMID: 37207753.