Molecular Approach to Identify Anti-inflammatory Potential of Stevioside in HFD-induced Type 2 Diabetic Rats: Evidence From in Vivo Study

Download Article

DOI: 10.21522/TIJPH.2013.SE.23.01.Art001

Authors : Vishnu Priya Veeraraghavan, Rajesh Kumar K.S, Selvaraj Jayaraman

Abstract:

Stevioside is a natural sweetener derived from the leaves of the Stevia rebaudiana plant. It has gained popularity as a sugar substitute due to its intense sweetness without adding calories or affecting blood sugar levels, making it a suitable option for people with diabetes or those looking to reduce their sugar intake. Studies have shown that stevioside has glucose lowering effects. Previous studies have shown that it has significant role in skeletal muscle but its role on expression of inflammatory signaling molecules in adipose tissue against high diet and sucrose-induced type-2 diabetes in experimental rats is yet to be done. The current research was undertaken to investigate if stevioside could also exert its antidiabetic effects by circumventing adipocyte induced inflammation, a key driving factor for insulin resistance in obese individuals. Effective dose of stevioside (20 mg/kg b.wt) was administered orally for 45 days to high fat diet and sucrose induced type-2 diabetic rats. Interestingly, stevioside treatment restores the elevated serum levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α) and sterol regulatory element binding protein-1c (SREBP-1c) and enhances Peroxisome Proliferator–activated receptor-γ (PPAR-γ) in adipocytes of diabetic rats. The gene expression of IR, GLUT4 and PPAR-γ mRNA were also significantly activated in stevioside treated groups but reduced IL-1 beta, IlL-6, IKKB, TNF-alpha and NFkB mRNA expression in diabetic adipose tissue. More importantly, stevioside acts very effectively as metformin to circumvent inflammation and insulin resistance in diabetic rats. Our results clearly show that stevioside inhibits obesity induced insulin resistance by ameliorating the inflammatory events and upregulating insulin signalling molecules.
Keywords: Stevioside, HFD-T2DM, pro inflammation, insulin signalling; adipose tissue, obesity; signaling pathways; Therapautics.

References:

[1] DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A., & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(1), 15019. https://doi.org/10.1038/nrdp.2015.19.

[2] Guariguata, L., Whiting, D., Weil, C., & Unwin, N. (2011). The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Research and Clinical Practice, 94(3), 322–332. https://doi.org/10.1016/j.diabres.2011.10.040.

[3] Hu, F. B. (2011). Globalization of Diabetes. Diabetes Care, 34(6), 1249–1257. https://doi.org/10.2337/dc11-0442.

[4] Prasad, M., Rajagopal, P., Devarajan, N., Veeraraghavan. V.P., Palanisamy, C.P., Cui, B., Patil, S., & Jayaraman, S. (2022). A comprehensive review on high -fat diet-induced diabetes mellitus: an epigenetic view. J Nutr Biochem. 107:109037. doi: 10.1016/j.jnutbio.2022.109037.

[5] Kiruthigha, T., Gayathri, R., Vishnu Priya, V., Selvaraj Jayaraman, & Kavitha, S. (2023). Piperine Modulates High Fat Diet - Induced Renal Damage by Regulating Kim-1 and Igf-1 Beta Signaling Molecules in Male Wistar Rats”. Journal of Advanced Zoology, 44 (S5):246-54.

[6] Dandona, P. (2004). Inflammation: the link between insulin resistance, obesity, and diabetes. Trends in Immunology, 25(1), 4–7. https://doi.org/10.1016/j.it.2003.10.013.

[7] Tsalamandris, S., Antonopoulos, A. S., Oikonomou, E., Papamikroulis, G.-A., Vogiatzi, G., Papaioannou, S., Deftereos, S., & Tousoulis, D. (2019). The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. European Cardiology Review, 14(1), 50–59. https://doi.org/10.15420/ecr.2018.33.1.

[8] Cruz, N. G., Sousa, L. P., Sousa, M. O., Pietrani, N. T., Fernandes, A. P., & Gomes, K. B. (2013). The linkage between inflammation and Type 2 diabetes mellitus. Diabetes Research and Clinical Practice, 99(2), 85–92. https://doi.org/10.1016/j.diabres.2012.09.003.

[9] Lontchi-Yimagou, E., Sobngwi, E., Matsha, T. E., & Kengne, A. P. (2013). Diabetes Mellitus and Inflammation. Current Diabetes Reports, 13(3), 435–444. https://doi.org/10.1007/s11892-013-0375-y.

[10] Padmapriya, A., Preetha, S., Selvaraj, J., & Sridevi, G. (2022). Effect of Carica papaya seed extract on IL-6 and TNF-α in human lung cancer cell lines-an In vitro study. Research Journal of Pharmacy and Technology, 15 (12): 5478-5482.

[11] Nath, S., Ghosh, S. K., & Choudhury, Y. (2017). A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. Journal of Pharmacological and Toxicological Methods, 84, 20–30. https://doi.org/10.1016/j.vascn.2016.10.007.

[12] Herieka, M., & Erridge, C. (2014). High‐fat meal induced postprandial inflammation. Molecular Nutrition & Food Research, 58(1), 136–146. https://doi.org/10.1002/mnfr.201300104.

[13] Mounithaa, N., Gayathri, R., Selvaraj Jayaraman, Vishnu Priya, V., & Kavitha, S. (2023). Effect of Piperine on an Nrf2/Keap 1 Signalling Mechanism in Adipose Tissue of High Fat Diet and Sucrose-Induced Experimental Diabetic Rats. Journal of Advanced Zoology, 44 (S5):232-39.

[14] Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., & Devasagayam, T. P. A. (2007). Indian Herbs and Herbal Drugs Used for the Treatment of Diabetes. Journal of Clinical Biochemistry and Nutrition, 40(3), 163–173. https://doi.org/10.3164/jcbn.40.163.

[15] Pang, G.-M., Li, F.-X., Yan, Y., Zhang, Y., Kong, L.-L., Zhu, P., Wang, K.-F., Zhang, F., Liu, B., & Lu, C. (2019). Herbal medicine in the treatment of patients with type 2 diabetes mellitus. Chinese Medical Journal, 132(1), 78–85. https://doi.org/10.1097/CM9.0000000000000006.

[16] Thana Lakshme, P.S., Gayathri, R., & Vishnu Priya V. (2021). Preliminary Phytochemical Screening and Estimation of Total Phenolic Content of Aqueous Cladode Extract of Opuntia dilleniid. Journal of Research in Medical and Dental Science, 9(2): 254-257.

[17] Mithil Vora, Vishnu Priya, V., Selvaraj,J., Gayathri, R., & Kavitha, S. (2021). Effect of Lupeol on proinflammatory Markers in Adipose Tissue of High-Fat Diet and Sucrose Induced Type-2 Diabetic Rats. Journal of Research in Medical and Dental Science, 9(10):116-121.

[18] Vishaka, S., Sridevi, G., & Selvaraj, J. (2022). An in vitro analysis on the antioxidant and anti-diabetic properties of Kaempferia galanga rhizome using different solvent systems. Journal of Advanced Pharmaceutical Technology and Research, 13 (6): 505-509.

[19] Chen, T.-H., Chen, S.-C., Chan, P., Chu, Y.-L., Yang, H.-Y., & Cheng, J.-T. (2005). Mechanism of the Hypoglycemic Effect of Stevioside, a Glycoside of Stevia rebaudiana. Planta Medica, 71(2), 108–113. https://doi.org/10.1055/s-2005-837775.

[20] Orellana-Paucar, A. M. (2023). Steviol Glycosides from Stevia rebaudiana: An Updated Overview of Their Sweetening Activity, Pharmacological Properties, and Safety Aspects. Molecules, 28(3), 1258. https://doi.org/10.3390/molecules28031258.

[21] Dev Arora, Gayathri, R., Selvaraj, J., Vishnu Priya, V., & Kavitha, S. (2021). Vitamin C and E Down Regulates the Expression of C-JNK, IKKB, NF-kB in Adipose Tissue of PCB-Exposed Rats. Journal of Research in Medical and Dental Science, 9(11):39-44.

[22] Khan, H.L.A., Sridevi, G., Selvaraj, & J. Preetha, S. (2021). In vitro Anti-inflammatory Properties in Various Extracts (Ethanol, Chloroform and Aqueous) of Kaempferia galanga Linn Rhizome. Journal of Pharmaceutical Research International, 33 (47B): 476–481. DOI:https://doi.org/10.9734/jpri/2021/v33i47B33146.

[23] Ponnulakshmi, R., Shyamaladevi, B., Vijayalakshmi, P., & Selvaraj, J. (2019). In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicology mechanisms and methods, 29(4), 276–290. https://doi.org/10.1080/15376516.2018.1545815.

[24] Jayaraman, S., Devarajan, N., Rajagopal, P., Babu, S., Ganesan, S.K., Veeraraghavan, V.P., Palanisamy, C.P., Cui, B., Periyasamy, V., & Chandrasekar K. (2021). β-Sitosterol Circumvents Obesity Induced Inflammation and Insulin Resistance by down-Regulating IKKβ/NF-κB and JNK Signaling Pathway in Adipocytes of Type 2 Diabetic Rats. Molecules. 26(7), 2101. doi: 10.3390/molecules26072101.

[25] Fan, C., Song, Q., Wang, P., Li, Y., Yang, M., & Yu, S.Y. (2019). Neuroprotective Effects of Curcumin on IL-1β-Induced Neuronal Apoptosis and Depression-Like Behaviors Caused by Chronic Stress in Rats. Frontiers in Cellular Neuroscience, 7, 12:516. doi: 10.3389/fncel.2018.00516.

[26] Zhang, M., Lv, X.-Y., Li, J., Xu, Z.-G., & Chen, L. (2008). The Characterization of High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model. Experimental Diabetes Research, 2008, 1–9. https://doi.org/10.1155/2008/704045.

[27] Nabi, S. A., Kasetti, R. B., Sirasanagandla, S., Tilak, T. K., Kumar, M. V. J., & Rao, C. A. (2013). Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complementary and Alternative Medicine, 13(1), 37. https://doi.org/10.1186/1472-6882-13-37.

[28] Jayaraman, S., Krishnamoorthy, K., Prasad, M., Veeraraghavan, V.P., Krishnamoorthy, R., Alshuniaber, M.A., Gatasheh, M.K., Elrobh, & M., Gunassekaran. (2023). Glyphosate potentiates insulin resistance in skeletal muscle through the modulation of IRS-1/PI3K/Akt mediated mechanisms: An in vivo and in silico analysis. Int J Biol Macromol, 242(Pt 2):124917. doi: 10.1016/j.ijbiomac.2023.124917.

[29] Prasad, M., Jayaraman, S., Natarajan, S.R., Veeraraghavan, V.P., Krishnamoorthy, R., Gatasheh, M.K., Palanisamy, C.P., & Elrobh, M. (2023). Piperine modulates IR/Akt/GLUT4 pathways to mitigate insulin resistance: Evidence from animal and computational studies. Int J Biol Macromol, 253(Pt 5):127242. doi: 10.1016/j.ijbiomac.2023.127242.

[30] Shen, P., Liu, M., Ng, T., Chan, Y., & Yong, E. L. (2006). Differential Effects of Isoflavones, from Astragalus Membranaceus and Pueraria Thomsonii, on the Activation of PPARα, PPARγ, and Adipocyte Differentiation In Vitro. The Journal of Nutrition, 136(4), 899–905. https://doi.org/10.1093/jn/136.4.899.

[31] Akifa Begum, Palati Sinduja, Priyadharshini, R., & Selvaraj Jayaraman. (2021). Estimation of Clinocopathological Correlation and Comparison of Salivary TNF-α among Normal and Post Radiotherapy Patients of Oral cancer-A Cross-Sectional Study. Journal of Research in Medical and Dental Science, 9(10): 92-97.

[32] Fathima Hinaz, Z., Gayathri, R., Selvaraj, J., Vishnu Priya, V., Kavitha, S., & Gayathri, R. (2021). Comparative Evaluation of Anti-Cholesterol Potential of Apple Cider Vinegar and Its Herbal Formulation with Allium Sativum and Honey-An In-Vitro Assay. Journal of Research in Medical and Dental Science 9 (10),142-147.

[33] Picard, F., & Auwerx, J. (2002). PPARγ and glucose homeostasis. Annual Review of Nutrition, 22(1), 167–197. https://doi.org/10.1146/annurev.nutr.22.010402.102808.

[34] Staels, B., & Fruchart, J.-C. (2005). Therapeutic Roles of Peroxisome Proliferator–Activated Receptor Agonists. Diabetes, 54(8), 2460–2470. https://doi.org/10.2337/diabetes.54.8.2460.

[35] Daynes, R. A., & Jones, D. C. (2002). Emerging roles of PPARS in inflammation and immunity. Nature Reviews Immunology, 2(10), 748–759. https://doi.org/10.1038/nri912.

[36] Sharma, B., Salunke, R., Srivastava, S., Majumder, C., & Roy, P. (2009). Effects of guggulsterone isolated from Commiphora mukul in high fat diet induced diabetic rats. Food and Chemical Toxicology, 47(10), 2631–2639. https://doi.org/10.1016/j.fct.2009.07.021.