Different Modalities to Assess Right Ventricular Function in Post-COVID Taking ST-Elevation as a Gold Standard and Arrhythmias in Post-COVID
Abstract:
The
COVID-19 caused by novel single-stranded RNA enveloped severe acute respiratory
syndrome coronavirus-2 (SARS CoV-2) first appeared in Wuhan, China. A lot of focus
has been given to pulmonary complications. According to several case reports, cardiovascular
associated clinical manifestations include myocarditis, arrhythmias, veno-thromboembolic
events, acute coronary syndrome (ACS), and pericarditis. Different modalities in
diagnosis like 2D, doppler can help in the early diagnosis of right ventricular
function. This study evaluates the cardiac changes in recovered COVID-19 positive
patients by 2D echocardiogram and other modalities. In this prospective observational
study, 139 participants recently recovered from COVID-19 illness were identified
and recruited after obtaining the Informed concerned form (ICF). The patients once
enrolled were subjected to 2D echo and ECG as part of routine clinical practice.
Out of 139 patients, 89 (64.03%) were males, and the rest were females. Based on
the severity scale, 13 (9.35%) participants had suffered a severe form of COVID-19
infection. Right ventricular functional assessment, right ventricular global strain
(RVGLS) was abnormal in 72 (51.80%) participants. Arrhythmias were reported in 31
(22.30%) participants; among them, 30 participants had sinus bradycardia. Our study
demonstrates the association between COVID-19 and cardiac changes/ incidence of
cardiovascular complications in recovered COVID-19 patients. This study provides
first-hand evidence of the incidence of abnormal LVGLS and RVGLS in COVID-19 recovered
patients. In addition, there was a higher incidence of arrythmias.
References:
[1]
CDC. (2020, March 28). Covid data tracker. Centers
for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker.
[2]
WHO coronavirus (COVID-19) dashboard. (n.d.).
Retrieved 27 July 2021, from https://covid19.who.int.
[3]
Luetkens, J. A., Isaak, A., Zimmer, S., Nattermann,
J., Sprinkart, A. M., Boesecke, C., Rieke, G. J., Zachoval, C., Heine, A., Velten,
M., &Duerr, G. D., 2020, Diffuse myocardial inflammation in covid-19 associated
myocarditis detected by multiparametric cardiac magnetic resonance imaging. Circulation:
Cardiovascular Imaging, 13(5).
https://doi.org/10.1161/CIRCIMAGING.120.010897.
[4]
Rajpal, S., Tong, M. S., Borchers, J., Zareba,
K. M., Obarski, T. P., Simonetti, O. P., & Daniels, C. J., 2021, Cardiovascular
Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection.
JAMA cardiology, 6(1), 116–118. https://doi.org/10.1001/jamacardio.2020.4916.
[5]
Bangalore, S., Sharma, A., Slotwiner, A., Yatskar,
L., Harari, R., Shah, B., Ibrahim, H., Friedman, G. H., Thompson, C., Alviar, C.
L., Chadow, H. L., Fishman, G. I., Reynolds, H. R., Keller, N., & Hochman, J.
S. (2020). ST-Segment Elevation in Patients with Covid-19 - A Case Series. The
New England Journal of Medicine, 382(25), 2478–2480. https://doi.org/10.1056/NEJMc2009020.
[6]
Sauer, F., Dagrenat, C., Couppie, P., Jochum,
G., Leddet, P., D’Amario, D., Asher, E., Rudzínski, P. N., Camm, C. F., & Thomson,
R., 2020, Pericardial effusion in patients with COVID-19: Case series. European
Heart Journal - Case Reports, 4(FI1). https://doi.org/10.1093/ehjcr/ytaa287.
[7]
Zheng, Y. Y., Ma, Y. T., Zhang, J. Y., & Xie,
X, 2020, COVID-19 and the cardiovascular system. Nature reviews. Cardiology,
17(5), 259–260. https://doi.org/10.1038/s41569-020-0360-5.
[8]
Wu, L., O’Kane, A. M., Peng, H., Bi, Y., Motriuk-Smith,
D., & Ren, 2020, SARS-CoV-2 and cardiovascular complications: From molecular
mechanisms to pharmaceutical management. Biochemical pharmacology, 178, 114114.
https://doi.org/10.1016/j.bcp.2020.114114.
[9]
Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B.,
& Wu, J. C, 2020, COVID-19 and cardiovascular disease: from basic mechanisms
to clinical perspectives. Nature reviews. Cardiology, 17(9), 543–558. https://doi.org/10.1038/s41569-020-0413-9.
[10]
Oudit, G. Y., Kassiri, Z., Jiang, C., Liu, P.
P., Poutanen, S. M., Penninger, J. M., & Butany, J, 2009, SARS-coronavirus modulation
of myocardial ACE2 expression and inflammation in patients with SARS. European
Journal of Clinical Investigation, 39(7), 618–625. https://doi.org/10.1111/j.1365-2362.2009.02153.x.
[11] Lindner, D., Fitzek,
A., Bräuninger, H., Aleshcheva, G., Edler, C., Meissner, K., Scherschel, K., Kirchhof,
P., Escher, F., Schultheiss, H. P., Blankenberg, S., Püschel, K., & Westermann,
D, 2020, Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19
Autopsy Cases. JAMA cardiology, 5(11), 1281–1285. https://doi.org/10.1001/jamacardio.2020.3551.
[12] Li, B., Yang, J.,
Zhao, F., Zhi, L., Wang, X., Liu, L., Bi, Z., & Zhao, Y, 2020, Prevalence and
impact of cardiovascular, metabolic diseases on COVID-19 in China. Clinical research
in cardiology: Official Journal of the German Cardiac Society, 109(5), 531–538.
https://doi.org/10.1007/s00392-020-01626-9.
[13] Churchill, T. W.,
Bertrand, P. B., Bernard, S., Namasivayam, M., Churchill, J., Crousillat, D., Davis,
E. F., Hung, J., & Picard, M. H, 2020, Echocardiographic Features of COVID-19
Illness and Association with Cardiac Biomarkers. Journal of the American Society
of Echocardiography: Official Publication of the American Society of Echocardiography,
33(8), 1053–1054. https://doi.org/10.1016/j.echo.2020.05.028.
[14] Levin, V. A., Rodriguez,
L. A., Edwards, M. S., Wara, W., Liu, H. C., Fulton, D., Davis, R. L., Wilson, C.
B., & Silver, P, 1988, treatment of medulloblastoma with procarbazine, hydroxyurea,
and reduced radiation doses to whole brain and spine. Journal of Neurosurgery,
68(3), 383–387. https://doi.org/10.3171/jns.1988.68.3.0383, 68,383–7.
[15] Lassen, M., Skaarup,
K. G., Lind, J. N., Alhakak, A. S., Sengeløv, M., Nielsen, A. B., Espersen, C.,
Ravnkilde, K., Hauser, R., Schöps, L. B., Holt, E., Johansen, N. D., Modin, D.,
Djernaes, K., Graff, C., Bundgaard, H., Hassager, C., Jabbari, R., Carlsen, J.,
Lebech, A. M., … Biering-Sørensen, T, 2020, Echocardiographic abnormalities and
predictors of mortality in hospitalized COVID-19 patients: the ECHOVID-19 study.
ESC heart failure, 7(6), 4189–4197. Advance Online Publication. https://doi.org/10.1002/ehf2.13044.
[16] Lairez, O., Blanchard,
V., Houard, V., Vardon-Bounes, F., Lemasle, M., Cariou, E., Lavie-Badie, Y., Ruiz,
S., Cazalbou, S., Delmas, C., Georges, B., Galinier, M., Carrié, D., Conil, J. M.,
& Minville, V, 2021, Cardiac imaging phenotype in patients with coronavirus
disease 2019 (COVID-19): results of the cocarde study. The International Journal
of Cardiovascular Imaging, 37(2), 449–457. https://doi.org/10.1007/s10554-020-02010-4.
[17] Goerlich, E., Gilotra,
N. A., Minhas, A. S., Bavaro, N., Hays, A. G., & Cingolani, O. H, 2021, Prominent
Longitudinal Strain Reduction of Basal Left Ventricular Segments in Patients with
Coronavirus Disease-19. Journal of Cardiac Failure, 27(1), 100-104.
https://doi.org/10.1016/j.cardfail.2020.09.469.
[18] Chan, J., Hanekom,
L., Wong, C., Leano, R., Cho, G. Y., & Marwick, T. H, 2006, Differentiation
of subendocardial and transmural infarction using two-dimensional strain rate imaging
to assess short-axis and long-axis myocardial function. Journal of the American
College of Cardiology, 48(10), 2026–2033. https://doi.org/10.1016/j.jacc.2006.07.050.
[19] Soulat-Dufour, L.,
Lang, S., Ederhy, S., Adavane-Scheuble, S., Chauvet-Droit, M., Nhan, P., Jean, M.
L., Ben Said, R., Issaurat, P., Boccara, F., & Cohen, A, 2020, Left ventricular
ejection fraction: An additional risk marker in COVID-19. Archives of cardiovascular
diseases, 113(11), 760–762. https://doi.org/10.1016/j.acvd.2020.08.002.
[20] Li, Y., Li, H.,
Zhu, S., Xie, Y., Wang, B., He, L., Zhang, D., Zhang, Y., Yuan, H., Wu, C., Sun,
W., Zhang, Y., Li, M., Cui, L., Cai, Y., Wang, J., Yang, Y., Lv, Q., Zhang, L.,
& Xie, M, 2020, Prognostic Value of Right Ventricular Longitudinal Strain in
Patients With COVID-19. JACC. Cardiovascular Imaging, 13(11), 2287–2299.
https://doi.org/10.1016/j.jcmg.2020.04.014.
[21] Rudski, L. G., Lai,
W. W., Afilalo, J., Hua, L., Hand Schumacher, M. D., Chandrasekaran, K., Solomon,
S. D., Louie, E. K., & Schiller, N. B, 2010, Guidelines for the echocardiographic
assessment of the right heart in adults: a report from the American Society of Echocardiography
endorsed by the European Association of Echocardiography, a registered branch of
the European Society of Cardiology, and the Canadian Society of Echocardiography.
Journal of the American Society of Echocardiography: official publication
of the American Society of Echocardiography, 23(7), 685–788. https://doi.org/10.1016/j.echo.2010.05.010.
[22] Carluccio, E., Biagioli,
P., Alunni, G., Murrone, A., Zuchi, C., Coiro, S., Riccini, C., Mengoni, A., D’Antonio,
A., & Ambrosio, G, 2018, Prognostic Value of Right Ventricular Dysfunction in
Heart Failure with Reduced Ejection Fraction: Superiority of Longitudinal Strain
Over Tricuspid Annular Plane Systolic Excursion. Circulation. Cardiovascular
Imaging, 11(1), e006894. https://doi.org/10.1161/CIRCIMAGING.117.006894.
[23] Medvedofsky, D., Koifman, E., Jarrett, H., Miyoshi, T., Rogers, T., Ben-Dor, I., Satler, L. F., Torguson, R., Waksman, R., & Asch, F. M, 2020, Association of Right Ventricular Longitudinal Strain with Mortality in Patients Undergoing Transcatheter Aortic Valve Replacement. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 33(4), 452–460. https://doi.org/10.1016/j.echo.2019.11.014.
[24] Mast, T. P., Taha,
K., Cramer, M. J., Lumens, J., van der Heijden, J. F., Bouma, B. J., van den Berg,
M. P., Asselbergs, F. W., Doevendans, P. A., & Teske, A. J, 2019, The Prognostic
Value of Right Ventricular Deformation Imaging in Early Arrhythmogenic Right Ventricular
Cardiomyopathy. JACC. Cardiovascular Imaging, 12(3), 446–455. https://doi.org/10.1016/j.jcmg.2018.01.012.
[25] Wang, D., Hu, B.,
Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y.,
Zhao, Y., Li, Y., Wang, X., & Peng, Z, 2020, Clinical Characteristics of 138
Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.
JAMA, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585.
[26] Lei, S., Jiang,
F., Su, W., Chen, C., Chen, J., Mei, W., Zhan, L. Y., Jia, Y., Zhang, L., Liu, D.,
Xia, Z. Y., & Xia, Z, 2020, Clinical characteristics and outcomes of patients
undergoing surgeries during the incubation period of COVID-19 infection. E-Clinical
Medicine, 21, 100331. https://doi.org/10.1016/j.eclinm.2020.100331.
[27] Yu, C. M., Wong,
R. S., Wu, E. B., Kong, S. L., Wong, J., Yip, G. W., Soo, Y. O., Chiu, M. L., Chan,
Y. S., Hui, D., Lee, N., Wu, A., Leung, C. B., & Sung, J. J, 2006, Cardiovascular
complications of severe acute respiratory syndrome. Postgraduate Medical Journal,
82(964), 140–144. https://doi.org/10.1136/pgmj.2005.037515.
[28] Wang, Y., Wang,
Z., Tse, G., Zhang, L., Wan, E. Y., Guo, Y., Lip, G., Li, G., Lu, Z., & Liu,
T, 2020, Cardiac arrhythmias in patients with COVID-19. Journal of Arrhythmia,
36(5), 827–836. https://doi.org/10.1002/joa3.12405.
[29] He, X. W., Lai,
J. S., Cheng, J., Wang, M. W., Liu, Y. J., Xiao, Z. C., Xu, C., Li, S. S., &
Zeng, H. S, 2020, Zhonghua xin xue guan bing za zhi, 48(6), 456–460. https://doi.org/10.3760/cma.j.cn112148-20200228-00137.