Bionic Eye – A Review
Abstract:
The
darkness of the night is broken by the brightness of the sun and people worship
sun for this. Similarly, providing even a flicker of light to a person who has
lost his/her sight is one of the greatest miracles a doctor can perform. Bionic
Eye- visual prosthetic devices serve this purpose and helps to restore some kind
of visual perception in patients with retinal pathologies like retinitis
pigmentosa and age related macular degeneration. The inception of this idea
dates back to the 18th century but the recent advances in
electronics, robotics and other technologies has helped in materializing the
idea. The basic function of the device is to receive the images using a camera,
convert it to electric signals and eventually stimulate the left-over healthier
parts of the visual pathway. There are various kinds of devices based on the
position of implants. Each of them have varied advantages. Understanding the
existing systems would help in improvising them or in finding better systems to
serve the same purpose.
References:
[1]. BBC (2015). Bionic
Eye improves macular degeneration patient’s sight [News Article]. Retrieved
from http://www.bbc.com/news/health-33612558.
[2]. Visual Prosthesis.
(n.d.). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/
Visual Prosthesis.
[3]. Galvani, L. (1762)
De ossibus. Theses physic-medical chirurgicae. Bononiae, St. Thomas
Aquinatis. Repr. :(1996) Pantaleoni M. (Ed.) De ossibus. Lectiones quattuor.
Bologna, Composers. Repr .:(1998) Bologna, Arnaldo Forni publisher.
[4]. Dobelle, W.H.
(2000). Artificial vision for the blind by connecting a television camera to
the visual cortex. ASAIO journal, 46(1), 3-9.
[5]. LeRoy C. (1755).
Ou L’on rend compte de quelques tentative sue l’on a faites pour guerir
plusieurs malaides par l’electricite. Hist Acad Roy Sciences (Paris). Memoire
MathPhys 60:87-95
[6]. Cavallo, T.
(1781). An essay on the theory and practice of medical electricity. The
author.
[7]. Foerster O.(1929).
Beitriige zur Pathophysiologie der Sehbahn und der Sehsphare. J Psychol
Neuro, Lpz. 39: 463–85
[8]. Krause F, Schum H.
(1931). Die epileptischen Erkrankungen. In: Kuttner H, ed. Neue
Deutsche Chirurgie. Vol. 49a. Stuttgart: Enke. 482–6.
[9]. Tassicker GE.
(1956). Preliminary report on a retinal stimulator. Br J Physiol Opt.
13: 102–5.
[10]. Joao Lobo
Antunes.(n.d). Retreived from http://www.researchcafe.net/content/view/75/36.
[11]. Wyatt, Jr., J.L.
(1998). The Retinal Implant Project. [PDF]. Research Laboratory of
Electronics at MIT.
[12]. Zrenner E, Stett
A, Weiss S et al. (1999) Can subretinal microphotodiodes successfully replace
degenerated photoreceptors? Vision Res. 39: 2555–67.
[13]. Rizzo JF, Miller
S, Denison T, Herndon T, Wyatt JL. (1996). Electrically evoked cortical
potentials from stimulation of rabbit retina with a microfabricated electrode
array. Invest Ophthalmol Vis Sci [ARVO Abstr] 37:5707
[14]. Grumet AE, Wyall
JL Jr., Rizzo JF. (2000). Multi electrode stimulation and recording in the
isolated retina. J neuroscimethods 101:31-42
[15]. Stett A, Barth W,
Weiss S, Haemmerle h, Zrenner E. (2000). Electrical multisite stimulation of
the isolated chicken retina. Vision Res 40:1785-1795
[16]. Veraart C,
Raftopoulos C, Mortimer JT et al. Visual sensations produced by optic nerve
stimulation using an implanted self-sizing spiral cuff electrode. Brain Res
1998; 813: 181–6.
[17]. Delbeke J, Oozeer
M, Veraart C. Position, size and luminosity of phosphenes generated by direct
optic nerve stimulation. Vision Res 2003; 43: 1091–102.
[18]. Duret FC, Delbeke
J, Gerard B, Veraart C. (2004). Strategies of object recognition performed
using a chronically implanted optic nerve prosthesis (Abstract). Annual Meeting
of the Association for Research in Vision and Ophthalmology. Fort Lauderdale
FL.
[19]. Duret F, Brelén
ME, Lambert V, Gérard B, Delbeke J, Veraart C. (2006). Object localization,
discrimination, and grasping with the optic nerve visual prosthesis. Restor
Neurol Neurosci. 24: 31–40.
[20]. Veraart C, Wanet-Defalque
MC, Gérard B, Vanlierde A, Delbeke J. (2003). Pattern recognition with the
optic nerve visual prosthesis. Artif Organs. 27: 996–1004.
[21]. Chow AY, Chow VY,
Packo KH, Pollack JS, Peyman GA, Schuchard R. (2004). The artificial silicon
retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch
Ophthalmol. 122: 460–9.
[22]. Humayun MS,
Weiland JD, Fujii GY et al. (2003). Visual perception in a blind subject with a
chronic microelectronic retinal prosthesis. Vision Res. 43: 2573–81.
[23]. Weiland JD, Yanai
D, Mahadevappa M et al. (2004) Visual task performance in blind humans with
retinal prosthetic implants. Conf Proc IEEE Eng Med Biol Soc. 6: 4172–3.
[24]. Wilms M, Eger M,
Schanze T, Eckhorn R (2003). Visual resolution with epi-retinal electrical
stimulation estimated from activation profiles in cat visual cortex. Vis
neurosci 20:543-555
[25]. Humayun MS, Dorn
JD, Ahuja AK et al. (2009). Preliminary 6 month results from the Argus II
epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc.
4566–8.
[26]. Sifferlin, A
(2013). FDA approves first bionic eye (News Article). CNN-TIME
[27]. Javaheri M, Hahn
DS, Lakhanpal RR, Weiland JD, Humayun MS. (2006). Retinal prostheses for the
blind. Ann Acad Med Singapore. 35: 137–44.
[28]. Eckmiller R.
(1997) Learning retina implants with epiretinal contacts [Review]. Ophthalmic
Res. 29: 281–9.
[29]. Hornig R, Zehnder
T, Velikay-Parel M, Laube T, Feucht M, Richard G. (2007). The IMI retinal
implant system. In: Humayun MS, Chader G, Weiland JD, eds. Artificial Sight:
Basic Reaserch, Biomedical Engineering, and Clinical Advances. New York:
Springer-Verlag. 111–28.
[30]. Roessler G, Laube
T, Brockmann C et al. (2009). Implantation and explantation of a wireless
epiretinal retina implant device: observations during the EPIRET3 prospective
clinical trial. Invest Ophthalmol Vis Sci. 50: 3003–8.
[31]. Rizzo JF
3rd,Wyatt J, Loewenstein J, Kelly S, Shire D. (2003). Methods and perceptual
thresholds for short-term electrical stimulation of human retina with
microelectrode arrays. Invest Ophthalmol Vis Sci. 44: 5355–61.
[32]. Rizzo JF
3rd,Wyatt J, Loewenstein J, Kelly S, Shire D. (2003). Perceptual efficacy of
electrical stimulation of human retina with a microelectrode array during
short-term surgical trials. Invest Ophthalmol Vis Sci. 44: 5362–9.
[33]. Bionic Vision
Australia. Retrieved from: http://www.bionicvision.org.au.
[34]. Bionic Vision
Australia. Our Approach. Retrieved from: http://bionicvision.org.au/about-us/ourapproach.html.
[35]. Lee SW, Seo JM,
Ha S, Kim ET, Chung H, Kim SJ. (2009). Development of microelectrode arrays for
artificial retinal implants using liquid crystal polymers. Invest Ophthalmol
Vis Sci. 50: 5859–66.
[36]. Ong, J. M., Cruz,
L., (2012). The bionic eye: a review. Clinical & Experimental
Ophthalmology. 40: 6-17.
[37]. Chow AY, Chow VY,
Packo KH, Pollack JS, Peyman GA, Schuchard R. (2004). The artificial silicon
retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch
Ophthalmol. 122: 460–9.
[38]. Pardue MT,
Phillips MJ, Hanzlicek B, Yin H, Chow AY, Ball SL. (2006). Neuroprotection of
photoreceptors in the RCS rat after implantation of a subretinal implant in the
superior or inferior retina. Adv Exp Med Biol. 572: 321–6.
[39]. Sachs HG, Gabel
VP. (2004). Retinal replacement – the development of microelectronic retinal
prostheses – experience with subretinal implants and new aspects. Graefes
Arch Clin Exp Ophthalmol. 242: 717–23.
[40]. Sachs HG, Schanze
T, Wilms M et al. (2005). Subretinal implantation and testing of polyimide film
electrodes in cats. Graefes Arch Clin Exp Ophthalmol. 243: 464–8.
[41]. Gekeler F,
Szurman P, Grisanti S et al. (2007) Compound subretinal prostheses with
extra-ocular parts designed for human trials: successful long-term implantation
in pigs. Graefes Arch Clin Exp Ophthalmol. 245: 230–41.
[42]. Sachs HG,
Bartz-Schmidt KU, Gekeler F et al. (2010) Subretinal visual prosthetic devices
in blind patients. Modifications in transchoroidal surgery and long term follow
up in the first 12 patients. Annual Meeting of the Association for Research in
Vision and Ophthalmology. Fort Lauderdale FL 2010 (Abstract).
[43]. Wilke R,
Greppmaier U, Harscher A, Benav H, Zrenner E. (2010) Factors affecting
perceptual thresholds of subretinal electric stimulation in blind volunteers.
Annual Meeting of the Association for Research in Vision and Ophthalmology.
Fort Lauderdale FL 2010 (Abstract).
[44]. Zrenner E.
(2010). Recent developments in subretinal electronic implants: chances and
limitations. Annual Meeting of the Association for Research in Vision and
Ophthalmology. Fort Lauderdale FL 2010 (Abstract).
[45]. Zrenner E,
Bartz-Schmidt KU, Benav H et al. (2011). Subretinal electronic chips allow
blind patients to read letters and combine them to words. R.Proc Biol Sci.
278(1711): 1489–97.
[46]. Kelly SK, Shire
DB, Chen J et al. (2009). Realization of a 15-channel, hermetically-encased
wireless subretinal prosthesis for the blind. Conf Proc IEEE Eng Med Biol
Soc 2009. 200–3.
[47]. Shire DB, Kelly
SK, Chen J et al. (2009). Development an implantation of a minimally invasive
wireless subretinal neurostimulator. IEEE Trans Biomed Eng. 56: 2502–11.
[48]. Mathieson, K.,
Loudin, J., et al. (2012). Photovoltaic retinal prosthesis with high pixel
density. Nature Photonics. 6(6):391-397.
[49]. Loudin, J. D.,
Simanovskii, D. M., et al. (2007). Optoelectronic retinal prosthesis: system
design and performance (PDF). J. Neural Engineering. 4(1):572-584.
[50]. Chowdhury V,
Morley JW, Coroneo MT. (2005). Stimulation of the retina with a multielectrode
extraocular visual prosthesis. ANZ J Surg. 75: 697–704.
[51]. Normann RA,
Greger B, House P, Romero SF, Pelayo F, Fernandez E. (2009). Toward the
development of a cortically based visual neuroprosthesis. J Neural Eng.
6: 035001.
[52]. Tehovnik EJ, Slocum
WM, Smirnakis SM, Tolias AS. (2009). Microstimulation of visual cortex to
restore vision. Prog Brain Res. 175: 347–75.
[53]. Schmidt EM, Bak
MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P. (1996). Feasibility of
a visual prosthesis for the blind based on intracortical microstimulation of
the visual cortex. Brain. 119: 507– 22.
[54]. Deep Brain
Stimulation for Parkinson’s Disease Study Group. (2001). Deep-brain stimulation
of the subthalamic nucleus or the parts interna of the globus pallidus in
Parkinson’s disease. N Engl J Med. 435: 956–63.
[55]. Kumar R, Lozano
AM, Kim YJ et al. (1998). Double-blind evaluation of subthalamic nucleus deep
brain stimulation in advanced Parkinson’s disease. Neurology. 51: 850–5.
[56]. Limousin P,
Pollak P, Benazzouz A et al. (1995). Bilateral subthalamic nucleus stimulation
for severe Parkinson’s disease. Mov Disord.10: 672–4.
[57]. Pezaris JS, Reid
RC. (2007). Demonstration of artificial visual percepts generated through
thalamic microstimulation. Proc Natl Acad Sci U S A.104: 7670–5.
[58]. Pezaris JS, Reid
RC. (2009). Simulations of electrode placement for a thalamic visual
prosthesis. IEEE Trans Biomed Eng. 56: 172–8.
[59]. Pezaris JS,
Eskandar EN. (2009). Getting signals into the brain: visual prosthetics through
thalamic microstimulation. Neurosurg Focus. 27: E6.
[60]. Manasa, L.,
(2015). Obstacle Detection Technologies to Empower Visually Challenged: A Short
Notes. International Journal of Science and Research. SUB159017