The Role of Leptin in Obesity-Induced Hypertension
Abstract:
Obesity is linked with the growth
of white adipose tissue and associated chronic hyperleptinemia. Leptin is a
hormone-like cytokine or adipokine secreted mainly from adipose tissue. High
leptin state in obesity rapidly causes selective resistance, focused in the
arcuate nucleus of the hypothalamus, and centered round leptin’s role in food
intake and satiety. This resistance lowers the body’s reaction to food intake
and prevents the anorexigenic effects of leptin. As this resistance builds up,
the intake of food increases causing an enhancement in body adiposity and
leptin levels. However, some pathways do not build resistance to leptin and
continue to exhibit the stimulatory effects, which cause a persistent stimulation
of sympathetic nervous system (SNS), particularly in the kidneys and skeletal
muscles. The increase in SNS activity in the kidney, along with the endothelial
dysfunction and oxidative stress, lead to an increase in blood pressure. Apart
from leptin's effects on SNS and renal function, this adipokine influences vascular
health and hypertension through several phenomena or mechanisms such as baroreflex
sensitivity, release of nitric oxide and cardiac hormones. In this review, an attempt
has been made to highlight different aspects of leptin biology, which are
relevant to hypertension.
References:
[1]. Arnold, A. C., & Diz, D. I.
(2014). Endogenous leptin contributes to baroreflex suppression within the
solitary tract nucleus of aged rats. American Journal of Physiology - Heart
and Circulatory Physiology, 307(11), H1539-1546.
[2].
Banks, W. A. (2008). The blood-brain barrier as a cause of obesity. Current
Pharmaceutical Design, 14(16),
1606-1614.
[3].
Beltowski, J. (2012). Leptin and the
regulation of endothelial function in physiological and pathological
conditions. Clinical and Experimental Pharmacology and Physiology, 39(2), 168-178.
[4].
da Silva, A. A., Carmo, J. D., Dubinion, J., &
Hall, J. E. (2009). The role of the sympathetic nervous system in
obesity-related hypertension. Current Hypertension Reports, 11(3), 206-211.
[5].
da Silva, A. A., Do Carmo, J. M.,
& Hall, J. E. (2013). Role of leptin and CNS melanocortins in
obesity hypertension. Current Opinion in Nephrology and Hypertension, 22(2), 135-140.
[6].
Fernandez-Riejos, P., Najib, S., Santos-Alvarez, J.,
Martin-Romero, C., Perez-Perez, A., Gonzalez-Yanes, C., & Sanchez-Margalet, V.
(2010). Role of leptin in the activation of immune cells. Mediators of
Inflammation, 2010, 568343.
[7].
Freeman, R. H., Go, O.,
Reams, G. P., Spear, R., Liu, K., & Villarreal, D.
(2014). Obesity hypertension: pathophysiological role of leptin in
neuroendocrine dysregulation. American Journal of the Medical Sciences, 347(6), 485-489.
[8].
Frühbeck, G. (2006).
Intracellular signalling pathways activated by leptin. Biochemical Journal,
393(Pt 1), 7-20.
[9].
Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z., & Hall, M. E.
(2015). Obesity-induced hypertension: interaction of neurohumoral and renal
mechanisms. Circulation Research, 116(6),
991-1006.
[10].
Haynes, W. G. (2005). Role of leptin in
obesity-related hypertension. Experimental Physiology, 90(5), 683-688.
[11].
Humphreys, M. H. (2011).
The brain splits obesity and hypertension. Nature
Medicine, 17(7), 782-783.
[12].
Kalil, G. Z., & Haynes,
W. G. (2012). Sympathetic nervous system in obesity-related hypertension:
mechanisms and clinical implications. Hypertension
Research, 35(1), 4-16.
[13].
Korda, M., Kubant, R.,
Patton, S., & Malinski, T. (2008). Leptin-induced endothelial dysfunction
in obesity. American Journal of
Physiology - Heart and Circulatory Physiology, 295(4), H1514-1521.
[14].
Lane, M. L., & Vesely, D. L.
(2013). Reduction of leptin levels by four cardiac hormones: Implications for
hypertension in obesity. Experimental and Therapeutic Medicine, 6(2), 611-615.
[15].
Mantzoros, C. S., Magkos,
F., Brinkoetter, M., Sienkiewicz, E., Dardeno, T. A., Kim, S. Y., Hamnvik, O.
R., Koniaris, A. (2011). Leptin in human physiology and pathophysiology. American Journal of Physiology Endocrinology
and Metabolism, 301(4), E567-584.
[16].
Martin, S. S.,
Qasim, A., & Reilly, M. P. (2008). Leptin resistance: a
possible interface of inflammation and metabolism in obesity-related
cardiovascular disease. Journal of the American College of Cardiology, 52(15), 1201-1210.
[17].
Mattu, H. S., & Randeva, H. S.
(2013). Role of adipokines in cardiovascular disease. Journal of
Endocrinology, 216(1),
T17-T36.
[18].
Nakamura, K., Fuster, J. J., &
Walsh, K. (2014). Adipokines: A link between obesity and cardiovascular
disease. Journal of Cardiology, 63(4),
250-259.
[19].
Olofsson, L. E., Unger, E.
K., Cheung, C. C., & Ku, A. W. (2013). Modulation of AgRP-neuronal function
by SOCS3 as an intiating event in diet-induced hypothalamic leptin resistance. Proceeding of the National Academy of
Sciences, 110(8), E697-E706.
[20].
Purkayastha, S., Zhang, G.,
& Cai, D. (2011). Uncoupling the mechanisms of obesity and hypertension by
targeting hypothalamic IKK-β and NF-κB. Nature
Medicine, 17(7), 883-887.
[21].
Pedroso, J. A., Buonfiglio,
D. C., Cardinali, L. I., Furigo, I. C., Ramos-Lobo, A. M., Tirapegui, J.,
Elias, C. F., Donato J. Jr. (2014). Inactivation of SOCS3 in leptin
receptor-expressing cells protects mice from diet-induced insulin resistance
but does not prevent obesity. Molecular
Metabolism, 3(6), 608-618.
[22].
Ray, A., & Cleary, M. P. (2010). Leptin as a potential therapeutic target
for breast cancer prevention and treatment. Expert
Opinion on Therapeutic Targets, 14(4), 443-451.
[23].
Reed, A. S.,
Unger, E. K., Olofsson, L. E., Piper, M. L.,
Myers, M. G., & Xu, A. W. (2010). Functional role of
suppressor of cytokine signaling 3 upregulation in hypothalamic leptin
resistance and long-term energy homeostasis. Diabetes, 59(4), 894-906.
[24].
Rivest, S. (2002). Does circulating leptin have the ability to cross the
blood-brain barrier and target neurons directly? Endocrinology, 143(9), 3211-3213.
[25].
Simonds, S. E., & Cowley, M. A. (2013).
Hypertension in obesity: is leptin the culprit? Trends in Neurosciences, 36(2), 121-132.
[26].
Skrapari, I., Tentolouris, N.,
Perrea, D., Bakoyiannis, C., Papazafiropoulou, A.,
Katsilambros, N., & Ioanna, S. (2007). Baroreflex sensitivity in
obesity: relationship with cardiac autonomic nervous system activity. Obesity
(Silver Spring), 15(7), 1685-1693.
[27].
Voulgari, C., Pagoni, S., Vinik, A.,
& Poirier, P. (2013). Exercise improves cardiac autonomic unction in
obesity and diabetes. Metabolism, 62(5),
609-621.
[28].
Wang, J., Wang, H., Luo, W.,
Guo, C., Wang, J., Chen, Y. E., & Chang, L.
(2013). Leptin-induced endothelial dysfunction is mediated by sympathetic
nervous system activity. Journal of American Heart Association, 2(5), e000299.
[29].
Yang, R., & Barouch, L. A. (2007). Leptin signaling
and obesity: Cardiovascular consequences. Circulation
Research, 101(6), 545-559.
[30].
Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai,
H., & Cai, D. (2008). Hypothalamic IKKb/Nf-kB and ER stress link
overnutrition to energy imbalance and obesity. Cell, 135(1), 61-73.