References:
[1]. AlonsoDeVelasco, E., Verheul,
A.F., Verhoef, J. and Snippe, H. (1995) Streptococcus pneumoniae: virulence factors,
pathogenesis, and vaccines. Microbiol Rev 59, 591-603.
[2]. Alakomi, H.L., Skytta, E.,
Saarela, M., Mattila-Sandholm, T., Latva-Kala, K. and Helander, I.M. (2000) Lactic
acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl
Environ Microbiol 66, 2001-2005.
[3]. Berry, A.M., Lock, R.A., Thomas,
S.M., Rajan, D.P., Hansman, D. and Paton, J.C. Cloning and nucleotide sequence of
the Streptococcus pneumoniae hyaluronidase gene and purification of the enzyme from
recombinant Escherichia coli. Infect Immun 62, 1101-1108.
[4]. Barbara, A., Bannister, S.H.
and Gillespie, J.J.(2006) Infection: Microbiology and management 3 rd edition. Blackwell
publishing Ltd, Oxford UK.
[5]. Charlier, C., Cretenet, M.,
Even, S. and Le Loir, Y. (2009) Interactions between Staphylococcus aureus and lactic
acid bacteria: an old story with new perspectives. Int J Food Microbiol 131, 30-39.
[6]. Christopher David (2003) The
role of hydrogen peroxide production in the biology of Streptococcus pneumoniae,
University of Pennsylvania. USA
[7]. Ciapetti, G., Cenni, E., Pratelli,
L. and Pizzoferrato, A. (1993) In vitro evaluation of cell/biomaterial interaction
by MTT assay. Biomaterials 14, 359-364.
[8]. Cotter, P.D. and Hill, C.
(2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol
Mol Biol Rev 67, 429-453, table of contents.
[9]. Fayol-Messaoudi, D., Berger,
C.N., Coconnier-Polter, M.H., Lievin-Le Moal, V. and Servin, A.L. (2005) pH-, Lactic
acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against
Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol 71, 6008-6013.
[10]. Greenwood, D. & Barer,
M., (2007). Medical microbiology: a guide to microbial infections: pathogenesis,
immunity, laboratory diagnosis, and control. 17th ed. Edinburgh; London: Churchill
Livingstone/Elsevier.
[11]. Hibbing, M.E., Fuqua, C.,
Parsek, M.R. and Peterson, S.B. Bacterial competition: surviving and thriving in
the microbial jungle. Nat Rev Microbiol 8, 15-25.
[12]. Hayreh,M.M., Hayreh, S. S.,
Baumbach, G. I., Cancila, P., Martin-Amat, G., and Tephly, T. R. (1980). Ocular
toxicity of methanol: An experimental study. In Neurotoxicity of the Visual System
(W. Merigan and B. Weiss, Eds.), pp. 35–53. Raven Press, New York.
[13]. Hoskins, J., Alborn, W.E.,
Jr., Arnold, J., Blaszczak, L.C., Burgett, S., DeHoff, B.S., Estrem, S.T., Fritz,
L., Fu, D.J., Fuller, W., Geringer, C., Gilmour, R., Glass, J.S., Khoja, H., Kraft,
A.R., Lagace, R.E., LeBlanc, D.J., Lee, L.N., Lefkowitz, E.J., Lu, J., Matsushima,
P., McAhren, S.M., McHenney, M., McLeaster, K., Mundy, C.W., Nicas, T.I., Norris,
F.H., O'Gara, M., Peery, R.B., Robertson, G.T., Rockey, P., Sun, P.M., Winkler,
M.E., Yang, Y., Young-Bellido, M., Zhao, G., Zook, C.A., Baltz, R.H., Jaskunas,
S.R., Rosteck, P.R., Jr., Skatrud, P.L. and Glass, J.I. Genome of the bacterium
Streptococcus pneumoniae strain R6. J Bacteriol 183, 5709-5717.
[14]. Jeong, J.K., Kwon, O., Lee,
Y.M., Oh, D.B., Lee, J.M., Kim, S., Kim, E.H., Le, T.N., Rhee, D.K. and Kang, H.A.
(2009) Characterization of the Streptococcus pneumoniae BgaC protein as a novel
surface beta-galactosidase with specific hydrolysis activity for the Galbeta1- 3GlcNAc
moiety of oligosaccharides. J Bacteriol 191, 3011-3023.
[15]. Kadioglu, A., Weiser, J.N.,
Paton, J.C. and Andrew, P.W. (2008) The role of Streptococcus pneumoniae virulence
factors in host respiratory colonization and disease. Nat Rev Microbiol 6, 288–301
[16]. Kaijalainen, Tarja, (2006)
Identification of Streptococcus pneumoniae. The National Public Health Institute
[17]. Kim, Y.H., Anirban, J.M.,
Song, H.Y., Seo, H.S. and Lee, B.T. In vitro and in vivo evaluations of 3D porous
TCP-coated and non-coated alumina scaffolds. J Biomater Appl 25, 539-558.
[18]. Lanie, J.A., Ng, W.L., Kazmierczak,
K.M., Andrzejewski, T.M., Davidsen, T.M., Wayne, K.J., Tettelin, H., Glass, J.I.
and Winkler, M.E. Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus
pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol
189, 38-51.
[19]. Leppanen, V.M., Merckel,
M.C., Ollis, D.L., Wong, K.K., Kozarich, J.W. and Goldman, A. (1999) Pyruvate formate
lyase is structurally homologous to type I ribonucleotide reductase. Structure 7,
733-744.
[20]. Li, S., Kelly, S.J., Lamani,
E., Ferraroni, M. and Jedrzejas, M.J. (2000) Structural basis of hyaluronan degradation
by Streptococcus pneumoniae hyaluronate lyase. EMBO J 19, 1228- 1240.
[21]. Lock, R.A., Paton, J.C. and
Hansman, D. (1988) Purification and immunological characterization of neuraminidase
produced by Streptococcus pneumoniae. Microb Pathog 4, 33-43.
[22]. Lysenko, E.S., Lijek, R.S.,
Brown, S.P. and Weiser, J.N. Within-host competition drives selection for the capsule
virulence determinant of Streptococcus pneumoniae. Curr Biol 20, 1222-1226.
[23]. Margolis, E., Yates, A. and
Levin, B.R. The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus
influenzae and Staphylococcus aureus: the role of competition and interactions with
host's immune response. BMC Microbiol 10, 59.
[24]. Maudsdotter, L., Jonsson,
H., Roos, S. and Jonsson, A.B. Lactobacilli reduce cell cytotoxicity caused by Streptococcus
pyogenes by producing lactic acid that degrades the toxic component lipoteichoic
acid. Antimicrob Agents Chemother 55, 1622-1628.
[25]. Mosmann, T. (1983) Rapid
colorimetric assay for cellular growth and survival: application to proliferation
and cytotoxicity assays. J Immunol Methods 65, 55-63.
[26]. Nagaoka, S., Murata, S.,
Kimura, K., Mori, T. and Hojo, K. (2010) Antimicrobial activity of sodium citrate
against Streptococcus pneumoniae and several oral bacteria. Applied microbiology
51.546-551
[27]. Paton, J.C., Berry, A.M.,
Lock, R.A., Hansman, D. and Manning, P.A. (1986) Cloning and expression in Escherichia
coli of the Streptococcus pneumoniae gene encoding pneumolysin. Infect Immun 54,
50-55.
[28]. Pericone, C.D., Overweg,
K., Hermans, P.W. and Weiser, J.N. (2000) Inhibitory and bactericidal effects of
hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of
the upper respiratory tract. Infect Immun 68, 3990-3997.
[29]. Pericone, C.D., Park, S.,
Imlay, J.A. and Weiser, J.N. (2003) Factors contributing to hydrogen peroxide resistance
in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the
toxic effects of the fenton reaction. J Bacteriol 185, 6815-6825.
[30]. Raftari, M., Jalilian, F.A.,
Abdulamir, A.S., Son, R., Sekawi, Z. and Fatimah, A.B. (2009) Effect of Organic
Acids on Escherichia coli O157:H7 and Staphylococcus aureus Contaminated Meat. Open
Microbiol J 3, 121-127.
[31]. Ross, J.J., Saltzman, C.L.,
Carling, P. and Shapiro, D.S. (2003) Pneumococcal septic arthritis: review of 190
cases. Clin Infect Dis 36, 319-327.
[32]. Sakurazawa, T. and Ohkusa,
T. (2005) Cytotoxicity of organic acids produced by anaerobic intestinal bacteria
on cultured epithelial cells. J Gastroenterol 40, 600-609.
[33]. Skrivanova, E., Marounek,
M., Benda, V., and Brezina, P. (2006) Susceptibility of Escherichia coli, Salmonella
sp. and Clostridium perfringens to organic acids and monolaurin. Veterinarni Medicina,
51,81-88
[34]. Shakhnovich, E.A., King,
S.J. and Weiser, J.N. (2002) Neuraminidase expressed by Streptococcus pneumoniae
desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae:
a paradigm for interbacterial competition among pathogens of the human respiratory
tract. Infect Immun 70, 7161-7164.
[35]. Tatusov, R.L., Mushegian,
A.R., Bork, P., Brown, N.P., Hayes, W.S., Borodovsky, M., Rudd, K.E. and Koonin,
E.V. (1996) Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome
comparison with Escherichia coli. Curr Biol 6, 279-291.
[36]. Terra, V.S., Homer, K.A.,
Rao, S.G., Andrew, P.W. and Yesilkaya, H. Characterization of novel beta-galactosidase
activity that contributes to glycoprotein degradation and virulence in Streptococcus
pneumoniae. Infect Immun 78, 348-357.
[37]. Tettelin, H., Nelson, K.E.,
Paulsen, I.T., Eisen, J.A., Read, T.D., Peterson, S., Heidelberg, J., DeBoy, R.T.,
Haft, D.H., Dodson, R.J., Durkin, A.S., Gwinn, M., Kolonay, J.F., Nelson, W.C.,
Peterson, J.D., Umayam, L.A., White, O., Salzberg, S.L., Lewis, M.R., Radune, D.,
Holtzapple, E., Khouri, H., Wolf, A.M., Utterback, T.R., Hansen, C.L., McDonald,
L.A., Feldblyum, T.V., Angiuoli, S., Dickinson, T., Hickey, E.K., Holt, I.E., Loftus,
B.J., Yang, F., Smith, H.O., Venter, J.C., Dougherty, B.A., Morrison, D.A., Hollingshead,
S.K. and Fraser, C.M. (2001) Complete genome sequence of a virulent isolate of Streptococcus
pneumoniae. Science 293, 498-506.
[38]. Treichel, J.L., Henry, M.M.,
Skumatz, C.M., Eells, J.T. and Burke, J.M. (2004) Antioxidants and ocular cell type
differences in cytoprotection from formic acid toxicity in vitro. Toxicol Sci 82,
183-192.
[39]. Tong, H.H., Blue, L.E., James,
M.A. and DeMaria, T.F. (2000) Evaluation of the virulence of a Streptococcus pneumoniae
neuraminidase-deficient mutant in nasopharyngeal colonization and development of
otitis media in the chinchilla model. Infect Immun 68, 921-924.
[40]. Yang, J., Naik, S.G., Ortillo,
D.O., Garcia-Serres, R., Li, M., Broderick, W.E., Huynh, B.H. and Broderick, J.B.
(2009) The iron-sulfur cluster of pyruvate formate-lyase activating enzyme in whole
cells: cluster interconversion and a valence-localized [4Fe-4S]2+ state. Biochemistry
48, 9234-9241.
[41]. Yesilkaya, H., Spissu, F.,
Carvalho, S.M., Terra, V.S., Homer, K.A., Benisty, R., Porat, N., Neves, A.R. and
Andrew, P.W. (2009) Pyruvate formate lyase is required for pneumococcal fermentative
metabolism and virulence. Infect Immun 77, 5418-5427.