The Emerging Global Challenge of Multidrug-Resistant Tuberculosis (MDR-TB) Therapy (An Expert Opinion)

Download Article

DOI: 10.21522/TIJCR.2014.06.01.Art006

Authors : Khalid Rahman

Abstract:

MDR-TB (Multidrug-Resistant Tuberculosis) reportedly proves to be the greatest health care burden responsible for a substantial deterioration of health-related quality of life of underprivileged people across the globe. MDR-TB. The late diagnosis of MDR-TB, absence of standardized therapy, and treatment delays are some of the significant factors that substantially elevate comorbidity and mortality risk of the affected patients. HIV positive MDR-TB patients experience a drastic reduction in their life expectancy and wellness outcomes. The WHO guidelines recommend various treatment regimens for the systematic treatment of MDR-TB. Category-4 therapy proves to be the standard treatment option for MDR-TB patients. However, the clinicians still require closely monitoring the clinical history of their MDR-TB patients/suspects in the context of including the most appropriate drugs in category-4 therapy. The elevated side-effects of MDR-TB therapies lead to treatment non-compliance and discontinuation of category-4 intervention. This eventually increases the frequency of MDR-TB-related comorbidities and mortality on a global scale. The clinicians and researchers require revisiting the already approved MDR-TB treatment regimens in the context of modifying the drugs’ combinations and/or dosages for decreasing the length of overall therapy while minimizing the risk of side effects. The researchers require undertaking prospective clinical trials to evaluate the therapeutic targets of unapproved MDR-TB treatment drugs in the context of optimizing the treatment combinations. Furthermore, the enhancement of drug susceptibility techniques and the thorough clinical examination of each MDR-TB case are highly required to effectively improve the overall quality of the selected antituberculosis therapy.

Keywords: MDR-TB, Drug-resistant, Tuberculosis, Pharmacotherapy, Adverse-Effects, Recommendations.

References:

[1].     Asgedom, S. W., Teweldemedhin, M., & Gebreyesus , H. (2018). Prevalence of Multidrug-Resistant Tuberculosis and Associated Factors in Ethiopia: A Systematic Review. Journal of Pathogens, 1-8. doi:10.1155/2018/7104921.

[2].     Azhar, G. S. (2012). DOTS for TB relapse in India: A systematic review. Lung India, 29(2), 147-153. doi:10.4103/0970-2113.95320.

[3].     Chingonzoh, R., Manesen, M. R., Madlavu, M. J., Sopiseka, N., Nokwe, M., Emwerem, M., . . . Kuonza , L. R. (2018). Risk factors for mortality among adults registered on the routine drug resistant tuberculosis reporting database in the Eastern Cape Province, South Africa, 2011 to 2013. PLoS One, 13(8), 1-15. doi: 10.1371/journal.pone.0202469.

[4].     ClinicalTrials.Gov. (2019, 04 22). A Phase 3 Study Assessing the Safety and Efficacy of Bedaquiline Plus PA-824 Plus Linezolid in Subjects with Drug Resistant Pulmonary Tuberculosis. Retrieved from https://clinicaltrials.gov/ct2/show/NCT02333799.

[5].     Drugs.com. (2019, 02 01). Aminosalicylic Acid. Retrieved from https://www.drugs.com/monograph/aminosalicylic-acid.html.

[6].     Ghiraldi-Lopes, L. D., Campanerut-Sá, P. A., Evaristo, G. P., Meneguello, J. E., Fiorini, A., Baldin, V. P., . . . Cardoso, R. F. (2019). New insights on Ethambutol Targets in Mycobacterium tuberculosis. Infectious Disorders Drug Targets, 19(1), 73-80. doi:10.2174/1871526518666180124140840.

[7].     Grover, G. S., & Takkar, J. (2008). Recent Advances in Multi-Drug-Resistant Tuberculosis and RNTCP. Indian Journal of Community Medicine, 33(4), 219-223. doi:10.4103/0970-0218.43238.

[8].     Heysell, S. K., Ahmed, S., Rahman, M. T., Akhanda, M. W., Gleason, A. T., Ebers, A., . . . Banu, S. (2018). Hearing loss with kanamycin treatment for multidrug-resistant tuberculosis in Bangladesh. Eur Respir J, 51(3), 1-5. doi:10.1183/13993003.01778-2017.

[9].     Jenkins, H. E., & Yuen, C. M. (2018). The burden of multidrug-resistant tuberculosis in children. Int J Tuberc Lung Dis, 22(5), 3-6. doi:10.5588/ijtld.17.0357.

[10]. Kumari, R., Banerjee, T., & Anupurba, S. (2018). Molecular detection of drug resistance to ofloxacin and kanamycin in Mycobacterium tuberculosis by using multiplex allele-specific PCR. Journal of Infection and Public Health, 11(1), 54-58. doi: 10.1016/j.jiph.2017.03.007.

[11]. Li, Y., Wang, F., Wu, L., Zhu, M., He, G., Chen, X., . . . Zhang, W. (2019). Cycloserine for treatment of multidrug-resistant tuberculosis: a retrospective cohort study in China. Infection and Drug Resistance, 721-731. doi:10.2147/IDR.S195555.

[12]. Millet, J. P., Shaw, E., Orcau, A., Casals, M., Miro, J. M., & Caylà, J. A. (2013). Tuberculosis Recurrence after Completion Treatment in a European City: Reinfection or Relapse? PLoS One, 1-8. doi: 10.1371/journal.pone.0064898.

[13]. Mukherjee, A., Lodha, R., & Kabra, S. K. (2017). Current therapies for the treatment of multidrug-resistant tuberculosis in children in India. Expert Opinion in Pharmacotherapy, 18(5), 1595-1606. doi:10.1080/14656566.2017.1373090.

[14]. Paul, R. (2018). The Threat of Multidrug-resistant Tuberculosis. Journal of Global Infectious Diseases, 10(3), 119-120. doi: 10.4103/jgid.jgid_125_17.

[15]. Pholwat, S., Stroup, S., Gratz, J., Trangan, V., Foongladda, S., Kumburu, H., . . . Houpt, E. (2014). Pyrazinamide susceptibility testing of Mycobacterium tuberculosis by high resolution melt analysis. Tuberculosis, 94(1), 1-13. doi: 10.1016/j.tube.2013.10.006.

[16]. Pranger, A. D., Werf, T. S., Kosterink, J. G., & Alffenaar, J. W. (2019). The Role of Fluoroquinolones in the Treatment of Tuberculosis in 2019. Drugs, 79(2), 161-171. doi:10.1007/s40265-018-1043-y.

[17]. Pubchem_NCBI. (2019). Pyrazinamide. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/pyrazinamide.

[18]. PubChem_NCBI. (2019a). Kanamycin. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/Kanamycin.

[19]. PubChem_NCBI. (2019b). Levofloxacin. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/Levofloxacin.

[20]. PubChem_NCBI. (2019c). Ethambutol. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/14052.

[21]. PubChem_NCBI. (2019d). Ethionamide. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/Ethionamide.

[22]. PubChem_NCBI. (2019e, 07 22). Cycloserine. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/cycloserine.

[23]. PubChem_NCBI. (2019f, 07 22). 4-Aminosalicylic acid. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/4-Aminosalicylic-acid.

[24]. Qadeer, E., Fatima, R., Yaqoob, A., Tahseen, S., Haq, M. U., Ghafoor, A., . . . Tiemersma, E. W. (2016). Population Based National Tuberculosis Prevalence Survey among Adults (>15 Years) in Pakistan, 2010–2011. PLoS One, 11(2), 1-16. doi: 10.1371/journal.pone.0148293.

[25]. Rabahi, M. F., Junior, J. L., Ferreira, A. C., Tannus-Silva, D. G., & Conde, M. B. (2017). Tuberculosis treatment. Journal Brasileiro de Pneumolgia, 43(6), 472-486. doi:10.1590/S1806-37562016000000388.

[26]. Rendon, A., Tiberi, S., Scardigli, A., D’Ambrosio, L., Centis, R., Caminero, J. A., & Migliori, G. B. (2016). Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): evidence and perspectives. Journal of Thoraic Disease, 8(10). Retrieved from http://jtd.amegroups.com/article/view/10081/html.

[27]. Richeldi, L., Covi, M., Ferrara, G., Franco, F., Vailati, P., Meschiari, E., . . . Velluti, G. (2002). Clinical use of Levofloxacin in the long-term treatment of drug resistant tuberculosis. Monaldi Archives for Chest Disease, 57(1), 39-43. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12174702.

[28]. Salian, S., Matt, T., Akbergenov, R., Harish, S., Meyer, M., Duscha, S., . . . Böttger, E. C. (2012). Structure-Activity Relationships among the Kanamycin Aminoglycosides: Role of Ring I Hydroxyl and Amino Groups. Antimicroial Agents and Chemotherapy, 56(12), 6104-6108. doi:10.1128/AAC.01326-12.

[29]. Shim, T. S., & Jo, K. W. (2013). Medical Treatment of Pulmonary Multidrug-Resistant Tuberculosis. Infection and Chemotherapy, 45(4), 367-374. doi:10.3947/ic.2013.45.4.367.

[30]. Stehr, M., Elamin, A. A., & Singh, M. (2015). Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria. Expert Review of Anti-Infective Therapy, 13(5), 593-603. doi:10.1586/14787210.2015.1021784.

[31]. Thee, S., Garcia-Prats, A. J., Donald, P. R., Hesseling, A. C., & Schaaf, H. S. (2016). A review of the use of ethionamide and prothionamide in childhood tuberculosis. Tuberculosis, 126-136. doi: 10.1016/j.tube.2015.09.007.

[32]. Tunitskaya, V. L., Khomutov, A. R., Kochetkov, S. N., Kotovskaya, S. K., & Charushin, V. N. (2011). Inhibition of DNA Gyrase by Levofloxacin and Related Fluorine-Containing Heterocyclic Compounds. Acta Naturae, 3(4), 94-99. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347614/.

[33]. Van, A. R., Pranger, A. D., Van, S. D., de-Lange, W. C., Van, D. W., Kosterink, J. G., & Alffenaar, J. W. (2013). Evaluation of co-trimoxazole in the treatment of multidrug-resistant tuberculosis. The European Respiratory Journal, 42(2), 504-12. doi:10.1183/09031936.00114812.

[34]. Varma-Basil, M., & Prasad, R. (2015). Dilemmas with ethionamide susceptibility testing of Mycobacterium tuberculosis: A microbiologist & physician's nightmare. Indian Journal of Medical Research, 142(5), 512-514. doi:10.4103/0971-5916.171272.

[35]. WHO. (2009). Provide MDR-TB therapy. In Management of MDR-TB: A Field Guide: A Companion Document to Guidelines for Programmatic Management of Drug-Resistant Tuberculosis: Integrated Management of Adolescent and Adult Illness (IMAI). Geneva: WHO.

[36]. WHO. (2014). Treatment strategies for MDR-TB and XDR-TB. In Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. Geneva: World Health Organization. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK247431/.

[37]. WHO. (2018). Global Tuberculosis Report. Geneva: World Health Organization.

[38]. WHO. (2018a). What is multidrug-resistant tuberculosis (MDR-TB) and how do we control it? Retrieved from https://www.who.int/features/qa/79/en/.

[39]. Yang, T. W., Park, H. O., Jang, H. N., Yang, J. H., Kim, S. H., Moon, S. H., . . . Kang, D. H. (2017). Side effects associated with the treatment of multidrug-resistant tuberculosis at a tuberculosis referral hospital in South Korea-A retrospective study. Medicine, 96(28), 1-5. doi:10.1097/MD.0000000000007482.

[40]. Zhang, Y., Shi, W., Zhang, W., & Mitchison, D. (2013). Mechanisms of Pyrazinamide Action and Resistance. Microbiol Spectr, 2(4), 1-12. doi: 10.1128/microbiolspec.MGM2-0023-2013.

[41]. Zheng, J., Rubin, E. J., Bifani, P., Mathys, V., Lim, V., Au, M., . . . Camacho, L. R. (2013). para-Aminosalicylic Acid Is a Prodrug Targeting Dihydrofolate Reductase in Mycobacterium tuberculosis. Journal of Biological Chemistry, 288(32), 23447-53456. doi:10.1074/jbc.M113.475798.