The Emerging Global Challenge of Multidrug-Resistant Tuberculosis (MDR-TB) Therapy (An Expert Opinion)
Abstract:
MDR-TB (Multidrug-Resistant Tuberculosis)
reportedly proves to be the greatest health care burden responsible for a substantial
deterioration of health-related quality of life of underprivileged people across
the globe. MDR-TB. The late diagnosis of MDR-TB, absence of standardized therapy,
and treatment delays are some of the significant factors that substantially elevate
comorbidity and mortality risk of the affected patients. HIV positive MDR-TB patients
experience a drastic reduction in their life expectancy and wellness outcomes. The
WHO guidelines recommend various treatment regimens for the systematic treatment
of MDR-TB. Category-4 therapy proves to be the standard treatment option for MDR-TB
patients. However, the clinicians still require closely monitoring the clinical
history of their MDR-TB patients/suspects in the context of including the most appropriate
drugs in category-4 therapy. The elevated side-effects of MDR-TB therapies lead
to treatment non-compliance and discontinuation of category-4 intervention. This
eventually increases the frequency of MDR-TB-related comorbidities and mortality
on a global scale. The clinicians and researchers require revisiting the already
approved MDR-TB treatment regimens in the context of modifying the drugs’ combinations
and/or dosages for decreasing the length of overall therapy while minimizing the
risk of side effects. The researchers require undertaking prospective clinical trials
to evaluate the therapeutic targets of unapproved MDR-TB treatment drugs in the
context of optimizing the treatment combinations. Furthermore, the enhancement of
drug susceptibility techniques and the thorough clinical examination of each MDR-TB
case are highly required to effectively improve the overall quality of the selected
antituberculosis therapy.
Keywords: MDR-TB, Drug-resistant, Tuberculosis,
Pharmacotherapy, Adverse-Effects, Recommendations.
References:
[1]. Asgedom, S. W., Teweldemedhin, M., & Gebreyesus , H.
(2018). Prevalence of Multidrug-Resistant Tuberculosis and Associated Factors
in Ethiopia: A Systematic Review. Journal of Pathogens, 1-8.
doi:10.1155/2018/7104921.
[2]. Azhar, G. S. (2012). DOTS for TB relapse in India: A
systematic review. Lung India, 29(2), 147-153. doi:10.4103/0970-2113.95320.
[3]. Chingonzoh, R., Manesen, M. R., Madlavu, M. J., Sopiseka,
N., Nokwe, M., Emwerem, M., . . . Kuonza , L. R. (2018). Risk factors for
mortality among adults registered on the routine drug resistant tuberculosis
reporting database in the Eastern Cape Province, South Africa, 2011 to 2013.
PLoS One, 13(8), 1-15. doi: 10.1371/journal.pone.0202469.
[4]. ClinicalTrials.Gov. (2019, 04 22). A Phase 3 Study
Assessing the Safety and Efficacy of Bedaquiline Plus PA-824 Plus Linezolid in
Subjects with Drug Resistant Pulmonary Tuberculosis. Retrieved from
https://clinicaltrials.gov/ct2/show/NCT02333799.
[5]. Drugs.com. (2019, 02 01). Aminosalicylic Acid. Retrieved
from https://www.drugs.com/monograph/aminosalicylic-acid.html.
[6]. Ghiraldi-Lopes, L. D., Campanerut-Sá, P. A., Evaristo, G.
P., Meneguello, J. E., Fiorini, A., Baldin, V. P., . . . Cardoso, R. F. (2019).
New insights on Ethambutol Targets in Mycobacterium tuberculosis. Infectious
Disorders Drug Targets, 19(1), 73-80. doi:10.2174/1871526518666180124140840.
[7]. Grover, G. S., & Takkar, J. (2008). Recent Advances
in Multi-Drug-Resistant Tuberculosis and RNTCP. Indian Journal of Community
Medicine, 33(4), 219-223. doi:10.4103/0970-0218.43238.
[8]. Heysell, S. K., Ahmed, S., Rahman, M. T., Akhanda, M. W.,
Gleason, A. T., Ebers, A., . . . Banu, S. (2018). Hearing loss with kanamycin treatment
for multidrug-resistant tuberculosis in Bangladesh. Eur Respir J, 51(3), 1-5.
doi:10.1183/13993003.01778-2017.
[9]. Jenkins, H. E., & Yuen, C. M. (2018). The burden of
multidrug-resistant tuberculosis in children. Int J Tuberc Lung Dis, 22(5),
3-6. doi:10.5588/ijtld.17.0357.
[10]. Kumari, R., Banerjee, T., & Anupurba, S. (2018).
Molecular detection of drug resistance to ofloxacin and kanamycin in
Mycobacterium tuberculosis by using multiplex allele-specific PCR. Journal of
Infection and Public Health, 11(1), 54-58. doi: 10.1016/j.jiph.2017.03.007.
[11]. Li, Y., Wang, F., Wu, L., Zhu, M., He, G., Chen, X., . .
. Zhang, W. (2019). Cycloserine for treatment of multidrug-resistant
tuberculosis: a retrospective cohort study in China. Infection and Drug
Resistance, 721-731. doi:10.2147/IDR.S195555.
[12]. Millet, J. P., Shaw, E., Orcau, A., Casals, M., Miro, J.
M., & Caylà, J. A. (2013). Tuberculosis Recurrence after Completion
Treatment in a European City: Reinfection or Relapse? PLoS One, 1-8. doi:
10.1371/journal.pone.0064898.
[13]. Mukherjee, A., Lodha, R., & Kabra, S. K. (2017).
Current therapies for the treatment of multidrug-resistant tuberculosis in
children in India. Expert Opinion in Pharmacotherapy, 18(5), 1595-1606.
doi:10.1080/14656566.2017.1373090.
[14]. Paul, R. (2018). The Threat of Multidrug-resistant
Tuberculosis. Journal of Global Infectious Diseases, 10(3), 119-120. doi:
10.4103/jgid.jgid_125_17.
[15]. Pholwat, S., Stroup, S., Gratz, J., Trangan, V.,
Foongladda, S., Kumburu, H., . . . Houpt, E. (2014). Pyrazinamide
susceptibility testing of Mycobacterium tuberculosis by high resolution melt
analysis. Tuberculosis, 94(1), 1-13. doi: 10.1016/j.tube.2013.10.006.
[16]. Pranger, A. D., Werf, T. S., Kosterink, J. G., &
Alffenaar, J. W. (2019). The Role of Fluoroquinolones in the Treatment of Tuberculosis
in 2019. Drugs, 79(2), 161-171. doi:10.1007/s40265-018-1043-y.
[17]. Pubchem_NCBI. (2019). Pyrazinamide. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/pyrazinamide.
[18]. PubChem_NCBI. (2019a). Kanamycin. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/Kanamycin.
[19]. PubChem_NCBI. (2019b). Levofloxacin. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/Levofloxacin.
[20]. PubChem_NCBI. (2019c). Ethambutol. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/14052.
[21]. PubChem_NCBI. (2019d). Ethionamide. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/Ethionamide.
[22]. PubChem_NCBI. (2019e, 07 22). Cycloserine. Retrieved from
https://pubchem.ncbi.nlm.nih.gov/compound/cycloserine.
[23]. PubChem_NCBI. (2019f, 07 22). 4-Aminosalicylic acid.
Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/4-Aminosalicylic-acid.
[24]. Qadeer, E., Fatima, R., Yaqoob, A., Tahseen, S., Haq, M.
U., Ghafoor, A., . . . Tiemersma, E. W. (2016). Population Based National
Tuberculosis Prevalence Survey among Adults (>15 Years) in Pakistan,
2010–2011. PLoS One, 11(2), 1-16. doi: 10.1371/journal.pone.0148293.
[25]. Rabahi, M. F., Junior, J. L., Ferreira, A. C.,
Tannus-Silva, D. G., & Conde, M. B. (2017). Tuberculosis treatment. Journal
Brasileiro de Pneumolgia, 43(6), 472-486. doi:10.1590/S1806-37562016000000388.
[26]. Rendon, A., Tiberi, S., Scardigli, A., D’Ambrosio, L.,
Centis, R., Caminero, J. A., & Migliori, G. B. (2016). Classification of
drugs to treat multidrug-resistant tuberculosis (MDR-TB): evidence and
perspectives. Journal of Thoraic Disease, 8(10). Retrieved from http://jtd.amegroups.com/article/view/10081/html.
[27]. Richeldi, L., Covi, M., Ferrara, G., Franco, F., Vailati,
P., Meschiari, E., . . . Velluti, G. (2002). Clinical use of Levofloxacin in
the long-term treatment of drug resistant tuberculosis. Monaldi Archives for
Chest Disease, 57(1), 39-43. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12174702.
[28]. Salian, S., Matt, T., Akbergenov, R., Harish, S., Meyer,
M., Duscha, S., . . . Böttger, E. C. (2012). Structure-Activity Relationships
among the Kanamycin Aminoglycosides: Role of Ring I Hydroxyl and Amino Groups.
Antimicroial Agents and Chemotherapy, 56(12), 6104-6108.
doi:10.1128/AAC.01326-12.
[29]. Shim, T. S., & Jo, K. W. (2013). Medical Treatment of
Pulmonary Multidrug-Resistant Tuberculosis. Infection and Chemotherapy, 45(4),
367-374. doi:10.3947/ic.2013.45.4.367.
[30]. Stehr, M., Elamin, A. A., & Singh, M. (2015).
Pyrazinamide: the importance of uncovering the mechanisms of action in
mycobacteria. Expert Review of Anti-Infective Therapy, 13(5), 593-603. doi:10.1586/14787210.2015.1021784.
[31]. Thee, S., Garcia-Prats, A. J., Donald, P. R., Hesseling,
A. C., & Schaaf, H. S. (2016). A review of the use of ethionamide and
prothionamide in childhood tuberculosis. Tuberculosis, 126-136. doi:
10.1016/j.tube.2015.09.007.
[32]. Tunitskaya, V. L., Khomutov, A. R., Kochetkov, S. N.,
Kotovskaya, S. K., & Charushin, V. N. (2011). Inhibition of DNA Gyrase by
Levofloxacin and Related Fluorine-Containing Heterocyclic Compounds. Acta
Naturae, 3(4), 94-99. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347614/.
[33]. Van, A. R., Pranger, A. D., Van, S. D., de-Lange, W. C.,
Van, D. W., Kosterink, J. G., & Alffenaar, J. W. (2013). Evaluation of
co-trimoxazole in the treatment of multidrug-resistant tuberculosis. The
European Respiratory Journal, 42(2), 504-12. doi:10.1183/09031936.00114812.
[34]. Varma-Basil, M., & Prasad, R. (2015). Dilemmas with
ethionamide susceptibility testing of Mycobacterium tuberculosis: A microbiologist
& physician's nightmare. Indian Journal of Medical Research, 142(5),
512-514. doi:10.4103/0971-5916.171272.
[35]. WHO. (2009). Provide MDR-TB therapy. In Management of
MDR-TB: A Field Guide: A Companion Document to Guidelines for Programmatic
Management of Drug-Resistant Tuberculosis: Integrated Management of Adolescent
and Adult Illness (IMAI). Geneva: WHO.
[36]. WHO. (2014). Treatment strategies for MDR-TB and XDR-TB.
In Companion Handbook to the WHO Guidelines for the Programmatic Management of
Drug-Resistant Tuberculosis. Geneva: World Health Organization. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK247431/.
[37]. WHO. (2018). Global Tuberculosis Report. Geneva: World
Health Organization.
[38]. WHO. (2018a). What is multidrug-resistant tuberculosis
(MDR-TB) and how do we control it? Retrieved from https://www.who.int/features/qa/79/en/.
[39]. Yang, T. W., Park, H. O., Jang, H. N., Yang, J. H., Kim,
S. H., Moon, S. H., . . . Kang, D. H. (2017). Side effects associated with the
treatment of multidrug-resistant tuberculosis at a tuberculosis referral
hospital in South Korea-A retrospective study. Medicine, 96(28), 1-5.
doi:10.1097/MD.0000000000007482.
[40]. Zhang, Y., Shi, W., Zhang, W., & Mitchison, D.
(2013). Mechanisms of Pyrazinamide Action and Resistance. Microbiol Spectr,
2(4), 1-12. doi: 10.1128/microbiolspec.MGM2-0023-2013.
[41]. Zheng, J., Rubin, E. J., Bifani, P., Mathys, V., Lim, V.,
Au, M., . . . Camacho, L. R. (2013). para-Aminosalicylic Acid Is a Prodrug
Targeting Dihydrofolate Reductase in Mycobacterium tuberculosis. Journal of
Biological Chemistry, 288(32), 23447-53456. doi:10.1074/jbc.M113.475798.