Role of Artificial Sweeteners in Development of Type 2 Diabetes Mellitus (DM): A Review
Abstract:
A number of lifestyle factors are known to be important to the development
of type 2 Diabetes mellitus (DM). These
are physical inactivity, sedentary lifestyle, cigarette smoking, dietary habits
and generous consumption of alcohol. Recently, it has been reported that 385 million
people had diabetes and the number of people with type 2 DM is increasing in every
year. Obesity has been found to contribute to approximately 55% of cases of type
2 DM. Consumption of sugar-sweetened beverages has been increasingly associated
with obesity and type 2 DM. Hence, many people have turned to high-intensity sugar
substitute sweeteners like aspartame, sucralose and saccharin as a way to reduce
the risk of these consequences. However, accumulating evidence suggests that frequent
consumers of these sugar substitutes may also be at increased risk of excessive
weight gain, metabolic syndrome, type 2 diabetes and cardiovascular disease. A rise
in the percent of the population who are obese coincides with an increase in the
widespread use of noncaloric artificial sweeteners, such as aspartame (e.g., Diet
Coke) and sucralose (e.g., Pepsi), in food products. This paper discusses these
findings and considers the hypothesis that consuming sweet-tasting but noncaloric
or reduced-calorie food and beverages interferes with learned responses that normally
contribute to glucose and energy homeostasis. Because of this interference, frequent
consumption of high-intensity sweeteners may have the counterintuitive effect of
inducing metabolic derangements. This review is based on a search of articles published
in PUBMED, Medline, the Cochrane Database of Systemic Reviews, and mainly focused
on type 2 diabetes mellitus, current diagnosis, treatment and role artificial sweeteners
in development of diabetes.
Keywords: Type 2 diabetes mellitus; Artificial Sweeteners; Obesity
References:
[1].
Burcelin, R., Knauf, C., & Cani, P.
D. Pancreatic alpha-cell dysfunction in diabetes. Diabetes Metab 2008; 34 (Suppl
2): 49−55.
[2].
Barroso, I. Genetics of type 2 diabetes.
Diabet Med 2005; 22: 517−535.
[3].
Brownlee, M. Biochemistry and molecular
cell biology of diabetic complications. Nature 2001; 414, 813–820.
[4].
Black, C., Donnelly, P., McIntyre, L.,
Royle, P.L., Shepherd, J.P., Thomas, S. Meglitinide analogues for type 2
diabetes mellitus. Cochrane Database of Systematic Reviews 2007.
[5].
Brown RJ, Walter M, Rother KI. Ingestion
of diet soda before a glucose load augments glucagon like peptide-1. Diab care
2009; 32(12):2184–2186.
[6].
Brown RJ, et al. Artificial sweeteners:
a systematic review of metabolic effects in youth. Int J Pediatr Obes. 2010;
5:305–312.
[7].
Buchanan, T. A., Metzger, B. E.,
Freinkel, N., & Bergman, R. N. Insulin sensitivity and B-cell
responsiveness to glucose during late pregnancy in lean and moderately obese
women with normal glucose tolerance or mild gestational diabetes. Am J Obstet
Gynecol 1990; 162: 1008−1014.
[8].
Chen, M., Bergman, R. N., & Porte,
D. Insulin resistance and [beta]-cell dysfunction in aging: the importance of
dietary carbohydrate. J Clin Endocrinol Metab 1988; 67: 951−957.
[9].
Dhingra R, Sullivan L, Jacques PF, et
al. Soft drink consumption and risk of developing cardio metabolic risk factors
and the metabolic syndrome in middle-aged adults in the community. Circulation
2007; 116(5):480–488.
[10]. Del,
P.S., Bianchi, C., Marchetti, P. Beta-cell function and anti-diabetic
pharmacotherapy. Diabetes/Metabolism Research and Reviews 2007; 23: 518–527.
[11]. De
Koning L, et al. Sugar-sweetened and artificially sweetened beverage consumption
and risk of type 2 diabetes in men. Am J Clin Nutr. 2011; 93:1321–1327.
[12]. Dunlop,
M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy.
Kidney International 2000; 77: 3–12.
[13]. DeFronzo,
R. A. (1979). Glucose intolerance of aging. Evidence for tissue insensitivity
to insulin. Diabetes 1979; 28: 1095−1101.
[14]. De
Groot, M., Anderson, R., Freedland, K. E., Clouse, R. E., & Lustman, P. J.
Association of depression and diabetes complications: a meta-analysis.
Psychosom Med 2001; 63: 619−630.
[15]. Fowler
SP, et al. Fueling the obesity epidemic? Artificially sweetened beverage use
and long-term weight gain. Obesity (Silver Spring). 2008; 16:1894–1900.
[16]. Fagherazzi
G, et al. Consumption of artificially and sugar-sweetened beverages and
incident type 2 diabetes in the Etude Epidemiologique aupres des femmes de la
Mutuelle Generale de l’Education Nationale-European Prospective Investigation
into Cancer and Nutrition cohort. Am J Clin Nutr. 2013; 97:517–523
[17]. Facchini,
F. S., Hua, N., Abbasi, F., & Reaven, G. M. Insulin resistance as a
predictor of age-related diseases. J Clin Endocrinol Metab 2001; 86: 3574−3578.
[18]. Goodyear,
L. J., & Kahn, B. B. Exercise, glucose transport, and insulin sensitivity.
Annu Rev Med 1998; 49: 235−261.
[19]. Hu,
F.B., and Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2
diabetes: epidemiologic evidence. Physiol. Behav 2010; 100: 47–54.
[20]. Hoogwerf,
B.J., Complications of diabetes mellitus. International Journal of Diabetes in
Developing Countries 2005; 25: 63–69.
[21]. Hoerger,
T.J., Segel, J.E., Gregg, E.W., Saaddine, J.B. Is glycemic control improving in
U.S. adults? Diabetes Care 2008; 31, 81–86.
[22]. Hull,
R. L., Westermark, G. T., Westermark, P., & Kahn, S. E. (2004). Islet
amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin
Endocrinol Metab 2004; 89: 3629−3643.
[23]. Jacobson,
A. M. Impact of improved glycemic control on quality of life in patients with
diabetes. Endocr Pract 2004; 10: 502−508.
[24]. Jang
HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste
receptors regulate secretion of glucagonlike peptide-1. Proc Natl Acad Sci USA
2007; 104(38):15069–15074.
[25]. Kahn,
S. E. (1993). Quantification of the relationship between insulin sensitivity
and Bcell function in human subjects. Evidence for a hyperbolic function.
Diabetes 1993; 42: 1663−1672.
[26]. Koshikawa,
M., Mukoyama, M., Mori, K., Suganami, T., Sawai, K., Yoshioka, T., Nagae, T.,
Yokoi, H., Kawachi, H., Shimizu, F., Sugawara, A., Nakao, K. Role of p38
mitogen-activated protein kinase activation in podocyte injury and proteinuria
in experimental nephrotic syndrome. Journal of American Society of Nephrology
2005; 16: 2690–2701.
[27]. Kutner,
N.G., Johansen, K.L., Zhang, R., Huang, Y., Amaral, S. Perspectives on the new
kidney disease education benefit: early awareness, race and kidney transplant
access in a USRDS study. American Journal of Transplantion 2012; 12, 1017–1023.
[28]. Kahn,
S. E., Haffner, S. M., Heise, M. A., Herman, W. H., Holman, R. R., Jones, N.
P., et al. Glycemic durability of rosiglitazone, metformin, or glyburide
monotherapy. N Engl J Med 2006; 355: 2427−2443.
[29]. Laska
MN, et al. Longitudinal associations between key dietary behaviors and weight
gain over time: transitions through the adolescent years. Obesity (Silver
Spring). 2012; 20:118–125.
[30]. Lutsey
PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic
syndrome: the Atherosclerosis Risk in Communities study. Circulation 2008;
117(6):754–61.
[31]. Lee,
M.-J., Feliers, D., Mariappan, M.M., Sataranatarajan, K., Sataranatarajan, K.,
Mahimainathan, L., Musi, N., Foretz, M., Viollet, B., Weinberg, J.M.,
Choudhury, G.G., Kasinath, B.S. A role for AMP activated protein kinase in
diabetes-induced renal hypertrophy. American Journal of Physiology – Renal
Physiology 2007; 292: 617– 627.
[32]. Meier,
M., Menne, J., Park, J.K., Haller, H. Nailing down PKC isoform specificity in
diabetic nephropathy two's company, three's a crowd. Nephrology Dialysis
Transplant 2007; 22: 2421–2425.
[33]. Mackenzie
T, Brooks B, O'Connor G. Beverage intake, diabetes, and glucose control of
adults in America. Ann Epidemiol 2006; 16(9):688–691.
[34]. McNaughton
SA, Mishra GD, Brunner EJ. Dietary patterns, insulin resistance, and incidence
of type 2 diabetes in the Whitehall II study. Diabetes Care 2008;
31(7):1343–1348.
[35]. Mooney,
R. A. Suppressors of cytokine signaling-1 and -6 associate with and inhibit the
insulin receptor. A potential mechanism for cytokine-mediated insulin
resistance. J Biol Chem 2001; 276: 25889−25893.
[36]. Mace
OJ, Affleck J, Patel N, et al. Sweet taste receptors in rat small intestine
stimulate glucose absorption through apical GLUT2. J Physiol 2007; 582(Pt
1):379–392.
[37]. Nelson
G, Hoon MA, Chandrashekar J, et al. Mammalian sweet taste receptors. Cell 2001;
106(3): 381–390.
[38]. Perley,
M., & Kipnis, D. M. Plasma insulin responses to glucose and tolbutamide of
normal weight and obese diabetic and nondiabetic subjects. Diabetes 1966; 15:
867−874.
[39]. Pepino
MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and
hormonal responses to an oral glucose load. Diabetes care. 2013;
36(9):2530–2535.
[40]. Polonsky,
K. S., Given, B. D., & Van Cauter, E. Twenty-four-hour profiles and patterns
of insulin secretion in normal and obese subjects. J Clin Invest 1988; 81:
442−448.
[41]. Qiu,
C., Cotch, M.F., Sigurdsson, S., Garcia, M., Klein, R., Jonasson, F. Retinal
and cerebral microvascular signs and diabetes the age, gene/environment
susceptibility-reykjavik study. Diabetes 2008; 57: 1645–1650.
[42]. Reaven,
G.M. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595−1607.
[43]. Robertson,
R. P., Harmon, J., Tran, P. O., Tanaka, Y., & Takahashi, H. Glucose
toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the
glutathione connection. Diabetes 2003; 52: 581−587.
[44]. Resnikoff,
S., Pascolini, D., Etya'ale, D., Kocur, I., Pararajasekaram, R., Pokharel,
G.P., Mariotti, S.P. Global data on visual impairment in the year 2002.
Bulletin of the World Health Organization 2004; 82: 844–851.Robertson, R. P.,
Harmon, J., Tran, P. O., & Poitout, V. Beta-cell glucose toxicity,
lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004;
53 (Suppl 1): 119−124.
[45]. Resnick,
H.E., Howard, B.V. Diabetes and cardiovascular disease. Annual Review of
Medicine 2002; 53: 245–267.
[46]. Romaguera
D, et al. Consumption of sweet beverages and type 2 diabetes incidence in
European adults: results from EPIC-InterAct. Diabetologia. 2013; 56:1520–1530.
[47]. Rui,
L., Yuan, M., Frantz, D., Shoelson, S., & White, M. F. SOCS-1 and SOCS-3
block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J
Biol Chem 2002; 277: 42394−42398.
[48]. Swithers,
S.E., Sample, C.H., and Davidson, T.L. Adverse effects of highintensity
sweeteners on energy intake and weight control in male and obesity-prone female
rats. Behav. Neurosci 2013; 127: 262–274.
[49]. Suez,
J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C.A., Maza, O., et
al. Artificial sweeteners induce glucose intolerance by altering the gut
microbiota. Nature 2014; 514: 181–186.
[50]. Saydah,
S., Bullard, K.M., Cheng, Y., Ali, M.K., Gregg, E.W., Geiss, L., and
Imperatore, G. Trends in cardiovascular disease risk factors by obesity level
in adults in the United States, NHANES 1999–2010. Obesity, 2014; 22: 1888–
1895.
[51]. Stumvoll,
M., Goldstein, B. J., & van Haeften, T. W. Type 2 diabetes: principles of
pathogenesis and therapy. Lancet 2005; 365: 1333−1346.
[52]. Shulman,
G. I. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106:
171−176.
[53]. Stumvoll,
M., Goldstein, B. J., & van Haeften, T. W. Type 2 diabetes: principles of
pathogenesis and therapy. Lancet 2005; 365: 1333−1346.
[54]. Suez
J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial
sweeteners induce glucose intolerance by altering the gut microbiota. Nature.
2014; 514(7521):181–186.
[55]. Shanik,
M. H., Xu, Y., Skrha, J., Dankner, R., Zick, Y., & Roth, J. Insulin resistance
and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care
2008; 31: 262−268.
[56]. Tesfaye,
S. Recent advances in the management of diabetic symmetrical polyneuropathy.
Journal of Diabetes Investigation 2010; 2: 33–42.
[57]. Valko,
M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J. Free
radicals and antioxidants in normal physiological functions and human disease.
The International Journal of Biochemistry & Cell Biology 2007; 39: 44–84.
[58]. Wellen,
K. E., & Hotamisligil, G. S. Inflammation, stress, and diabetes. J Clin
Invest 2005; 115: 1111−1119.
[59]. Wolf,
I., Sadetzki, S., Catane, R., Karasik, A., Kaufman, B. Diabetes mellitus and
breast cancer. The Lancet Oncology 2005; 6: 103–111.
[60]. Yuan,
S.Y., Breslin, J.W., Perrin, R., Gaudreault, N., Guo, M., Kargozaran, H.
Microvascular permeability in diabetes and insulin resistance. Microcirculation
2007; 14: 363–373.
[61]. Yang
Q. Gain weight by “going diet?” Artificial sweeteners and the neurobiology of
sugar cravings: Neuroscience 2010. Yale J Biol Med. 2010; 83:101–108.