Occurrence, Molecular Characterisation and Antibiogram of Water Quality Indicator Bacteria (Pseudomonas Aeruginosa and Enterobacter Aerogenes) in Water Samples from Klang River

Download Article

DOI: 10.21522./TIJBMS.2016.04.01.Art003

Authors : Olowofeso Abisola Mercy, Suryadevara Nagaraja

Abstract:

Background and Objectives: Klang River is a 120 km long extremely polluted river with 11 major tributaries. The pollution is due to the areas where the water passes through. The aims of this research were to identify multidrug resistant Pseudomonas aeruginosa and Enterobacter aerogenes, phenotypically identify their resistance induced traits, and to determine the molecular characterisation of these strains.

Methods: In this research, 30 water samples were collected from different sites along Klang River, their physical properties and biological oxygen demand were estimated. The gram negative multidrug resistant (MDR) strains were isolated, Hodge test, Double Disk Synergy Test and Disk Potentiation Test were done to identify the cause of their resistance induced traits, and plasmid DNA profiling was carried out.

Results: One multidrug resistant (MDR) P. aeruginosa strain was isolated from the 30 samples, it was a non-carbapenemase and metallo-β-lactamase (MBL) producing strain. 9 E. aerogenes carbapenemase and MBL producing strains were identified, 6 of them were MDR, after extracting the bacteria plasmid DNA, it was confirmed that the bacteria were within the same range as that of control bacterium (marker).

Conclusion: Multidrug resistant P. aeruginosa and E. aerogenes were present in the water samples and they had similarly sized DNA fragments to control bacterium.

Keywords: Pseudomonas aeruginosa; Enterobacter aerogenes; multidrug resistance; metallo-β-lactamase.

References:

[1].     Lockhart, S., Abramson, M., Beekmann, S., Gallagher, G., Riedel, S., Diekema, D., Quinn, J. and Doern, G. (2007). Antimicrobial Resistance among Gram-Negative Bacilli Causing Infections in Intensive Care Unit Patients in the United States between 1993 and 2004. Journal of Clinical Microbiology, 45(10), pp.3352-3359.

[2].     Hidron, A., Edwards, J., Patel, J., Horan, T., Sievert, D., Pollock, D. and Fridkin, S. (2008). NHSN Annual Update: Antimicrobial‐Resistant Pathogens Associated with Healthcare‐Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007 •. Infection Control and Hospital Epidemiology, 29(11), pp.996-1011.

[3].     Thiolas, A., Bollet, C., La Scola, B., Raoult, D. and Pages, J. (2005). Successive Emergence of Enterobacter aerogenes Strains Resistant to Imipenem and Colistin in a Patient. Antimicrobial Agents and Chemotherapy, 49(4), pp.1354-1358.

[4].     Mallea, M., Chevalier, J., Bornet, C., Eyraud, A., Davin-Regli, A., Bollet, C. and Pages, J. (1998). Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology, 144(11), pp.3003-3009.

[5].     Jana, S., Trivedi, M. and Branton, A. (2015). Characterization of Phenotype and Genotype of Biofield Treated Enterobacter aerogenes. Translational Medicine, 05(04).

[6].     Hallin, M., Deplano, A., Roisin, S., Boyart, V., De Ryck, R., Nonhoff, C., Byl, B., Glupczynski, Y. and Denis, O. (2012). Pseudo-Outbreak of Extremely Drug-Resistant Pseudomonas aeruginosa Urinary Tract Infections Due to Contamination of an Automated Urine Analyzer. Journal of Clinical Microbiology, 50(3), pp.580-582.

[7].     Adesoji, A., Ogunjobi, A. and Olatoye, I. (2015). Molecular characterization of selected multidrug resistant Pseudomonas from water distribution systems in southwestern Nigeria. Annals of Clinical Microbiology and Antimicrobials, 14(1).

[8].     Mena KD and Gerba CP (2009). Risk assessment of Pseudomonas aeruginosa in water. Reviews of Environmental Contamination and Toxicology, 201, pp.71-115.

[9].     Craun , G., Calderon, R. and Craun, M. (2005). Outbreaks associated with recreational water in the United States. International Journal of Environmental Health Research, 15(4), pp.243-262.

[10]. Fontes, L., Neves, P., Oliveira, S., Silva, K., Hachich, E., Sato, M. and Lincopan, N. (2011). Isolation of Pseudomonas aeruginosa Coproducing Metallo- -Lactamase SPM-1 and 16S rRNA Methylase RmtD1 in an Urban River. Antimicrobial Agents and Chemotherapy, 55(6), pp.3063-3064.

[11]. Mehul S Chaudhari Tanuja B Javadekar Govind Ninama Neelam Pandya Jivraj Damor (2011) A study of metallo-beta-lactatamase producing pseudomonas aeruginosa in clinical samples of S.S.G. hospital. Natl J Med Res, 1 (2), 60-63.

[12]. Pitout, J., Gregson, D., Poirel, L., McClure, J., Le, P. and Church, D. (2005). Detection of Pseudomonas aeruginosa Producing Metallo Lactamases in a Large Centralized Laboratory. Journal of Clinical Microbiology, 43(7), pp.3129-3135.

[13]. Mena KD and Gerba CP (2009). Risk assessment of Pseudomonas aeruginosa in water. Reviews of Environmental Contamination and Toxicology, 201, pp.71-115.

[14]. Ranjan, S., Sreenivasa Babu, P. and Banashankari, G. (2014). Comparison of epidemiological and antibiotic susceptibility pattern of metallo-beta-lactamase-positive and metallo-beta-lactamase-negative strains of pseudomonas aeruginosa. Journal of Laboratory Physicians, 6(2), p.109.

[15]. Corcoran, E., Nellemann, C., Baker, E., Bos, R., Osborn, D. and Savelli, H. (2010). Sick water? The central role of wastewater management in sustainable development. 1st ed. Arendal: UNEP/GRID-Arendal.

[16]. Ventola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, Pharmacy and Therapeutics, 40(4), 277–283.

[17]. Fawell, J. (2003). Contaminants in drinking water. British Medical Bulletin, 68(1), pp.199-208.

[18]. Artemova, T., Gerardin, Y., Dudley, C., Vega, N. and Gore, J. (2015). Isolated cell behavior drives the evolution of antibiotic resistance. Molecular Systems Biology, 11(7), pp.822-823.

[19]. Hussain, M. and Rao, T. (2013). Effect of Industrial Effluents on Surface Water Quality - A Case Study of Patancheru, Andhra Pradesh, India. Current World Environment Journal, 8(3), pp.445-454.

[20]. Coutinho, F., Silveira, C., Pinto, L., Salloto, G., Cardoso, A., Martins, O., Vieira, R. and Clementino, M. (2014). Antibiotic Resistance is Widespread in Urban Aquatic Environments of Rio de Janeiro, Brazil. Microbial Ecology, 68(3), pp.441-452.

[21].  Okokwo Iheanyi, Damilola, Adejoye Oluseyi; Adeola, Ogunnusi Tolulope; A, Enobong; B, Shittu Olufunke. (2008). Microbiological and physicochemical analysis of different water samples used for domestic purposes in Abeokuta and Ojota, Lagos State, Nigeria. African Journal of Biotechnology, pp. 617-621.

[22]. Carpenter, J. (1965). THE CHESAPEAKE BAY INSTITUTE TECHNIQUE FOR THE WINKLER DISSOLVED OXYGEN METHOD. Limnology and Oceanography, 10(1), pp.141-143.

[23]. Slekovec, C., Plantin, J., Cholley, P., Thouverez, M., Talon, D., Bertrand, X. and Hocquet, D. (2012). Tracking Down Antibiotic-Resistant Pseudomonas aeruginosa Isolates in a Wastewater Network. PLoS ONE, 7(12), p.e49300.

[24]. Cappuccino, J. and Sherman, N. (2007). Microbiology: A Laboratory Manual. 8th ed.

[25]. CLSI Institute 2011

[26]. Bashir D, Thokar MA, Fomda BA, Bashir G, Zahoor D, Ahmad S, Toboli AS (2011). Detection of metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. Afr. J. Microbiol. Res. 5(2):164-172.

[27]. Jorgensen, J. and Turnidge, J. (2015). Susceptibility Test Methods: Dilution and Disk Diffusion Methods*. Manual of Clinical Microbiology, 11th Edition, pp.1253-1273.

[28]. Amjad, A., Mirza, I., Abbasi, S., Farwa, U., Malik, N., & Zia, F. (2011). Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iranian Journal of Microbiology, 3(4), pp.189–193.

[29]. Sowmya, G., Shivappa, Ranjitha Shankaregowda, Raghavendra Rao M, Rajeshwari K G, Madhuri Kulkarni (2015). Detection of Metallo-beta lactamase production in clinical isolates of Nonfermentative Gram negative bacilli. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), pp. 43-48.

[30]. Canhoto, O. and Magan, N. (2005). Electronic nose technology for the detection of microbial and chemical contamination of potable water. Sensors and Actuators B: Chemical, 106(1), pp.3-6.

[31]. Khajuria, A., Praharaj, A., Kumar, M. and Grover, N. (2014). Carbapenem Resistance among Enterobacter Species in a Tertiary Care Hospital in Central India. Chemotherapy Research and Practice, 2014, pp.1-6.

[32]. Nasreen, M., Sarker, A., Malek, M., Ansaruzzaman, M. and Rahman, M. (2015). Prevalence and Resistance Pattern of Pseudomonas aeruginosa isolated from Surface Water. Advances in Microbiology, 05(01), pp.74-81.

[33]. Bhalerao DS, Roushani S, Kinikar AG, Akhter I. (2010). Study of Metallo-beta lactamase producing Pseudomonas aeruginosa in Pravara Rural Hospital. Pravara Med Rev; 2(3).

[34]. Manoharan, A., Chatterjee, S., Mathai, D. and SARI Study Group (2010). Detection and characterization of metallo beta lactamases producing Pseudomonas aeruginosa. Indian Journal of Medical Microbiology, 28(3), p.241.

[35]. Kali, A. (2013). Detection of metallo-beta-lactamase producing Pseudomonas aeruginosa in intensive care units. Australasian Medical Journal, 6(12), pp.686-693.

[36]. Qu TT1, Zhang JL, Wang J, Tao J, Yu YS, Chen YG, Zhou JY, Li LJ. (2009). Evaluation of phenotypic tests for detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains in China. J Clin Microbiol 47(4): pp.1136-1142.

[37]. Jácome, P., Alves, L., Cabral, A., Lopes, A. and Maciel, M. (2012). Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 45(6), pp.707-712.

[38]. Lee, K., Lim, Y., Yong, D., Yum, J. and Chong, Y. (2003). Evaluation of the Hodge Test and the Imipenem-EDTA Double-Disk Synergy Test for Differentiating Metallo- -Lactamase-Producing Isolates of Pseudomonas spp. and Acinetobacter spp. Journal of Clinical Microbiology, 41(10), pp.4623-4629.

[39]. Ataee R. A., Tavana A. m., Hosseini S. M. J., Moridi K., and Zadegan M. G. (2012). A Method for Antibiotic Suseptibility Testing: Applicable and Accurate. Jundishapur J Microbiol. 5(1), pp. 341-345.

[40]. Cox, B. (2003). A review of dissolved oxygen modelling techniques for lowland rivers. The Science of The Total Environment, 314-316, pp.303-334.

[41]. Diene, S., Merhej, V., Henry, M., El Filali, A., Roux, V., Robert, C., Azza, S., Gavory, F., Barbe, V., La Scola, B., Raoult, D. and Rolain, J. (2012). The Rhizome of the Multidrug-Resistant Enterobacter aerogenes Genome Reveals How New “Killer Bugs” Are Created because of a Sympatric Lifestyle. Molecular Biology and Evolution, 30(2), pp.369-383.37.