Standardized Precipitation Index (SPI)-Based Flood and Drought Hotspot Mapping in Niger, West Africa
Abstract:
Niger is a Sahelian territory in West
Africa, with a surface area of 1,267,000 km². Most of it is desert, sparsely populated,
or uninhabitable, with a low population density of around 18 inhabitants per km².
The adverse effects of climate change and the frequency and intensity of natural
disasters are increasing, while the country is evolving in a context characterised
by a lack of and/or limited access to detailed, reliable, and up-to-date data, useful
for better risk and disaster management. The methodological approach was based on
the use of the agroecological map of Niger offering four main zones (Sudanian, agropastoral,
pastoral and desert), the calculation and projection on this map of the Standardized
Precipitation Index (SPI) of 3935 localities based on the rainfall proxy data series
(1979-2035), and then the identification of zones impacted by extreme climatic events.
The populations impacted in these identified areas are estimated by projecting onto
these areas the updated population of more than 36,000 georeferenced localities
in ReNaLoc. The result of this approach shows that it is possible to opportunely
identify zones and collect key data for use in the disaster risk management process
in the context of a country where data is difficult to acquire.
References:
[1] World Bank
Group, 2021, Pathways to sustainable growth in Niger, A world bank group country
economic memorandum, p110-134.
[2] OCHA, 2022, Cadre
de l’action anticipatoire Pilote au Niger : Sècheresse Version approuvée du 5 Janvier
2022, www.unocha.org/publications/report/niger/cadre-de-l-action-anticipatoire-pilote-au-niger-s-cheresse-version-approv-e-du-5.
[3]
Fode M. & Adamou O., 2003, Sècheresse et variations pluviométriques
au Niger de 1950 à 1991, Annales de l’Université Abdou Moumouni, Tome VII, pp. 117-132,
2003.
[4] Niger-PDES, 2022, Diagnostic
strategique, Tome I, Plan de Développement Economique et Social (PDES) 2022-2026.
[5] Pierre O., Catherine
B. & Bernard T., 2005, Analyse climatique de la région de Gouré, Niger oriental
: récentes modifications et impacts environnementaux, https://journals.openedition.org/cybergeo/3338.
[6]
Lawan T. & Guianluca F. 2010, Chocs et vulnérabilité au
Niger : analyse des données secondaires. Programme Alimentaire Mondial, Service
de l’Analyse de la Sécurité Alimentaire (VAM).
[7]
New tab (desinventar.net).
[8] Niger-CNEDD, 2021,
Stratégie et Plan National d’Adaptation face aux changements climatiques dans le
secteur Agricole SPN2A 2020-2035. https://duddal.org/s/bibnum-promap/item/1542#.
[9] CEDEAO, 2018,
Évaluation des risques et des vulnérabilités pays ; Niger, http://www.creativeassociatesinternational.com/wp-content/uploads/2020/10/CRVA-Report-Niger_FRANCAIS.pdf.
[10] FAO, 2011, Disaster Risk Management Strategy
in West Africa and the Sahel, https://www.fao.org/3/i2323e/i2323e.pdf.
[11] Aich, V, Kone,
B, Häattermann, F., Paton, E., 2016, Time series analysis of floods in the Niger
River Basin, in Water 2016, 8, 165.
[12] Giovanni M.,
Maurizio B., Luc D., Mohamed H., Edoardo F., Gaptia L., Geremy P., Alessandro P.,
Maurizio R., Elisa S., Andrea T., Tiziana De F., Leandro R., Sara B., Maurizio T.,
Théo V. and Vieri T., 2021, Recent Changes in Hydroclimatic Patterns over Medium
Niger River Basins at the Origin of the 2020 Flood in Niamey (Niger).
[13] Vieri T., Edoardo F., Hassimou I. &
Katiellou G., 2021, Les Inondations au Niger 1998-2020, juillet 2021.https://www.researchgate.net/publication/353015905_Les_Inondations_au_Niger_1998-2020/link/60e451b8299bf1ea9ee5f206/download.
[14] CEDEAO, 2021,
Initiative Hydromet de la CEDEAO : Renforcement des services météorologiques, climatiques
et hydrologiques en Afrique de l’Ouest, rapport analytique ». https://fr.readkong.com/page/initiative-hydromet-de-la-cedeao-renforcement-des-8437256.
[15]
Banque mondiale, 2013, Evaluation
des risques du secteur agricole au Niger : de la réaction aux crises à la gestion
des risques à long terme. Rapport Numéro :74322-NE,
retreived from : https://duddal.org/files/original/0f37c3f5261bca7a18b02527da250a108e73132e.pdf.
[16] Niger-CNESI, 2020,
Evaluation des dommages, des pertes et des besoins & stratégie de relèvement
post-inondations 2020 au Niger, février 2021, rapport Cabinet du Premier Ministre.
[17] Niger-MAH/GC,
2018, Revue du cadre institutionnel et juridique de la gestion des risques de catastrophes
(RRC) au Niger, 2018. Rapport du ministère de l’action humanitaire et de la gestion
de catastrophes.
[18] Niger-DNPGCA,
2014, Rapport d’évaluation des capacités nationales pour la réduction des risques
de catastrophes au Niger. https://undp-cadri.leman.un-icc.cloud/system/files/2021-06/NIGER-Rapport-d-Evaluation-des-Capacites-en-RRC.pdf
. P78.
[19] (IRI, TAMSAT),
Climate data tools 7.0, http://www.tamsat.org.uk/data/.
[20] Niger-INS, 2012,
Réseau National des Localités du Niger.
[21] McKee et al.,
1993, SPI drought class classification . https://www.researchgate.net/figure/SPI-drought-class-classification-McKee-et-al-1993_tbl1_307649020.
[22] Sorin C., 2015,
The Standardized Precipitation Index – an overview, Romanian journal of meteorology,
Volume 12, issues 1-2, 2015.
[23] TAU ; Course,
2020, Quantitative Techniques for Management (tauedu.org).
[24]
INS-Niger, 2011, Caractéristiques sociodémographiques des
ménages, https://www.stat-niger.org/wp-content/uploads/2020/05/caracteristiques_sociodemographiques_DES_-Menages.pdf.
[25] World Bank Group, 2023, Urban flood risk
handbook: Assessing risk and identifying interventions. https://openknowledge.worldbank.org/entities/publication/c967c64d-a12f-407c-801b-3887755e6ddf.