Dental Pulp Stem Cells in Regenerative Therapy

Download Article

DOI: 10.21522/TIJAR.2014.10.02.Art007

Authors : Prabhadevi Maganur, Shankargouda Patil, Kavitha Chandrashekhara Menon

Abstract:

Stem cells, also known as progenitor/precursor cells, have the unique trait of self-renewal and multi-lineage differentiation. Dental stem cells (DSCs) are holding a pivotal role during recent times as they thrive as the cornerstone for the development of cell transplantation therapies that correct periodontal disorders and damaged dentin. DSCs are used therapeutically for different organ systems and numerous diseases, including neurological disorders, diabetes, liver disease, bone tissue engineering, and dentistry. In dentistry, the focus is on predominantly regenerating the pulp and damaged dentin, repairing perforations, and periodontal regenerations. Above all, whole tooth regeneration has been constantly under research. The next decade could be a crucial junction where huge leaps in stem cell-based regenerative therapies could become a reality with successful tissue engineering therapies this could be a biological alternative to synthetic materials that are in use currently. But dental stem cells have their share of challenges for which the research must happen effectively adhering to social responsibilities at all levels.

Keywords: Stem cells, Regeneration, Regenerative therapy, SHED.

References:

[1] Chalisserry, E. P., Nam, S. Y., Park, S. H., & Anil, S., 2017, Therapeutic potential of dental stem cells. Journal of Tissue Engineering, 8, 2041731417702531.

[2] Nakao, K., & Tsuji, T., 2008, Dental regenerative therapy: Stem cell transplantation and bioengineered tooth replacement, Japanese dental science review, 44(1), 70-75.

[3] Nakashima, M., & Akamine, A., 2005, The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of Endodontics, 31(10), 711–718.

[4] Nakashima, M., Iohara, K., Murakami, M., Nakamura, H., Sato, Y., Ariji, Y., & Matsushita, K., 2017, Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem cell research & therapy, 8(1), 61.

[5] Soudi, A., Yazdanian, M., Ranjbar, R., Tebyanian, H., Yazdanian, A., Tahmasebi, E., Keshvad, A., & Seifalian, A., 2021, Role and application of stem cells in dental regeneration: A comprehensive overview. Excli Journal, 20, 454–489.

[6] Bansal, R., & Jain, A., 2015, Current overview on dental stem cells applications in regenerative dentistry. Journal of Natural Science, Biology, and Medicine, 6(1), 29–34.

[7] Mason, C., & Dunnill, P., 2008. A brief definition of regenerative medicine. Regenerative Medicine, 3(1), 1–5.

[8] Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S., 2000, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.

[9] Panitvisai, P., & Messer, H. H.,1995, Cuspal deflection in molars in relation to endodontic and restorative procedures. Journal of endodontics, 21(2), 57–61.

[10] Schwartz, R. S., & Robbins, J. W., 2004, Post placement and restoration of endodontically treated teeth: a literature review. Journal of Endodontics, 30(5), 289–301.

[11] Yoshida, S., Tomokiyo, A., Hasegawa, D., Hamano, S., Sugii, H., & Maeda, H., 2020, Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy. Biology, 9(7), 160.

[12] Guo, R., & Yu, J., 2022, Multipotency & immunomodulatory Benefits of Stem Cells from Human Exfoliated Deciduous Teeth: Front. Dent. Med, 3, 805875.

[13] Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S., 2003, SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812.

[14] Rosa, V., Zhang, Z., Grande, R. H., & Nör, J. E., 2013, Dental pulp tissue engineering in full-length human root canals. Journal of Dental Research, 92(11), 970–975.

[15] Cordeiro, M. M., Dong, Z., Kaneko, T., Zhang, Z., Miyazawa, M., Shi, S., Smith, A. J., & Nör, J. E., 2008, Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. Journal of Endodontics, 34(8), 962–969.

[16] Zhai, Q., Dong, Z., Wang, W., Li, B., & Jin, Y., 2019, Dental stem cell and dental tissue regeneration. Frontiers of Medicine, 13(2), 152–159.

[17] Iohara, K., Imabayashi, K., Ishizaka, R., Watanabe, A., Nabekura, J., Ito, M., Matsushita, K., Nakamura, H., & Nakashima, M., 2011, Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue engineering. Part A, 17(15-16), 1911–1920.

[18] Rosa, V., Zhang, Z., Grande, R. H., & Nör, J. E., 2013, Dental pulp tissue engineering in full-length human root canals. Journal of dental research, 92(11), 970–975.

[19] Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S., 2000, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.

[20] Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., DenBesten, P., Robey, P. G., & Shi, S., 2002, Stem cell properties of human dental pulp stem cells. Journal of dental research, 81(8), 531–535.

[21] Wang, J., Ma, H., Jin, X., Hu, J., Liu, X., Ni, L., & Ma, P. X., 2011, The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials, 32(31), 7822–7830.

[22] Wang, J., Ma, H., Jin, X., Hu, J., Liu, X., Ni, L., & Ma, P. X., 2011, The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials, 32(31), 7822–7830.

[23] Batouli, S., Miura, M., Brahim, J., Tsutsui, T. W., Fisher, L. W., Gronthos, S., Robey, P. G., & Shi, S., 2003, Comparison of stem-cell-mediated osteogenesis and dentinogenesis. Journal of dental research, 82(12), 976–981.

[24] Sun, H. H., Chen, B., Zhu, Q. L., Kong, H., Li, Q. H., Gao, L. N., Xiao, M., Chen, F. M., & Yu, Q., 2014, Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials, 35(35), 9459–9472.

[25] Chun, S. Y., Lee, H. J., Choi, Y. A., Kim, K. M., Baek, S. H., Park, H. S., Kim, J. Y., Ahn, J. M., Cho, J. Y., Cho, D. W., Shin, H. I., & Park, E. K., 2011, Analysis of the soluble human tooth proteome and its ability to induce dentin/tooth regeneration. Tissue engineering. Part A, 17(1-2), 181–191.

[26] Takeda, T., Tezuka, Y., Horiuchi, M., Hosono, K., Iida, K., Hatakeyama, D., Miyaki, S., Kunisada, T., Shibata, T., & Tezuka, K., 2008, Characterization of dental pulp stem cells of human tooth germs. Journal of dental research, 87(7), 676–681.

[27] Moussa, D. G., & Aparicio, C., 2019, Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. Journal of tissue engineering and regenerative medicine, 13(1), 58–75.

[28] Petersen, P. E., & Ogawa, H., 2005, Strengthening the prevention of periodontal disease: the WHO approach. Journal of periodontology, 76(12), 2187–2193.

[29] Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Robey, P.G., Wang, C.Y., Shi, S., 2004, Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364: 149-155.

[30] Shi, S., Gronthos, S., Chen, S., Reddi, A., Counter, C. M., Robey, P. G., & Wang, C. Y., 2002, Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nature biotechnology, 20(6), 587–591.

[31] Aoki, A., Mizutani, K., Schwarz, F., Sculean, A., Yukna, R. A., Takasaki, A. A., Romanos, G. E., Taniguchi, Y., Sasaki, K. M., Zeredo, J. L., Koshy, G., Coluzzi, D. J., White, J. M., Abiko, Y., Ishikawa, I., & Izumi,. Y.,2015, Periodontal and peri-implant wound healing following laser therapy. Periodontology 2000, 68(1), 217–269.

[32] Tsumanuma, Y., Iwata, T., Washio, K., Yoshida, T., Yamada, A., Takagi, R., Ohno, T., Lin, K., Yamato, M., Ishikawa, I., Okano, T., & Izumi, Y., 2011, Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials, 32(25), 5819–5825.

[33] Han, J., Menicanin, D., Marino, V., Ge, S., Mrozik, K., Gronthos, S., & Bartold, P. M., 2014, Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. Journal of periodontal research, 49(3), 333–345.

[34] Ninomiya, T., Hiraga, T., Hosoya, A., Ohnuma, K., Ito, Y., Asashima, M., & Nakamura, H.,2014, Enhanced Bone-Forming Activity of Side Population Cells in the Periodontal Ligament. Cell Transplantation. 2014;23(6):691-701.

[35] Kuo, T.F., Huang, A.T., Chang, H.H., Lin, F.H., Chen, S.T., Chen, r.S., Chou, C.H., Lin, H.C., Chiang, H., & Chen, M.H., 2008, Regeneration of dentin-pulp complex with cementum and periodontal ligament formation using dental bud cells in gelatin-chondroitin-hyaluronan tri-copolymer scaffold in swine. Journal of Biomedical Materials research. Part A. 2008 Sep;86(4):1062-1068.

[36] Robey, P.G., & Bianco, P., 2006, The use of adult stem cells in rebuilding the human face. J Am Dent Assoc, 137(7): 961–972.

[37] Aly L. A., 2015, Stem cells: Sources, and regenerative therapies in dental research and practice. World journal of stem cells, 7(7), 1047–1053.

[38] Duailibi, M. T., Duailibi, S. E., Young, C. S., Bartlett, J. D., Vacanti, J. P., & Yelick, P. C., 2004, Bioengineered teeth from cultured rat tooth bud cells. Journal of dental research, 83(7), 523–528.

[39] Sumita, Y., Honda, M. J., Ohara, T., Tsuchiya, S., Sagara, H., Kagami, H., & Ueda, M., 2006, Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials, 27(17), 3238–3248.

[40] Honda, M. J., Tsuchiya, S., Sumita, Y., Sagara, H., & Ueda, M., 2007, The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials, 28(4), 680–689.

[41] Yamamoto, H., Kim, E. J., Cho, S. W., & Jung, H. S., 2003, Analysis of tooth formation by reaggregated dental mesenchyme from mouse
embryo. Journal of electron microscopy, 52(6), 559–566.

[42] Hu, B., Nadiri, A., Bopp-Kuchler, S., Perrin-Schmitt, F., Wang, S., Lesot, H., 2005, Dental epithelial histo-morphogenesis in the mouse: positional information versus cell history. Arch Oral Biol, 50, 131-136.

[43] Hu, B., Nadiri, A., Kuchler-Bopp, S., Perrin-Schmitt, F., Peters, H., & Lesot, H., 2006, Tissue engineering of tooth crown, root, and periodontium. Tissue engineering, 12(8), 2069–2075.

[44] Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B. M., Zhang, C., Liu, H., Gronthos, S., Wang, C. Y., Wang, S., & Shi, S., 2006, Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS one, 1(1), e79.

[45] Nakao, K., Morita, R., Saji, Y., Ishida, K., Tomita, Y., Ogawa, M., Saitoh, M., Tomooka, Y., & Tsuji, T., 2007, The development of a bioengineered organ germ method. Nature methods, 4(3), 227–230.

[46] Herberts, C. A., Kwa, M. S., & Hermsen, H. P., 2011, Risk factors in the development of stem cell therapy. Journal of translational medicine, 9, 29.

[47] Saini, R., Saini, S., & Sharma, S., 2009, Stem cell therapy: the eventual future. International journal of trichology, 1(2), 145–146.