Validation of Non-Linear Relationships-Based UTAUT Model on Higher Distance Education Students’ Acceptance of WhatsApp for Supporting Learning

Download Article

DOI: 10.21522/TIJAR.2014.07.02.Art004

Authors : Douglas Yeboah, Paul Nyagorme

References:

[1]    Smith, R. (2015). The role of social media in higher education marketing. Retrieved May 12, 2015 from http://www.bostoninteractive.com/blog/industries/socialmedia-higher-education-marketing.

[2]    Fattah, S. F. E. S. A. (2015). The effectiveness of using WhatsApp messenger as one of mobile learning techniques to develop students' writing skills. Journal of Education and Practice, 6(32), 115-127.

[3]    Vrocharidou, A., & Efthymiou, I. (2012). Computer mediated communication for social and academic purposes: Profiles of use and university students' gratifications. Computers & Education, 58(1), 609–616.

[4]    Ogara, S., Koh, C., & Prybutok, V. (2014). Investigating factors affecting social presence and user satisfaction with mobile instant messaging. Computers in Human Behavior, 36(2014), 453–459.

[5]    Cifuentes, O., & Lents, N. (2010). Increasing student-teacher interactions at an urban commuter campus through instant messaging and online office hours. Electronic Journal of Science Education, 14(1), 1–13.

[6]    Venkatesh V., Morris M., Davis G. & Davis F. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly. 27(3), 425-478. DOI: 10.2307/30036540.

[7]    Bervell, B. & Umar, I. N. (2017). Validation of UTAUT model: re-considering non-linear relationships of exogeneous variables in higher education technology acceptance research. EURASIA Journal of Mathematics Science and Technology Education, 13(10), 6472-6490. DOI: 10.12973/eurasia.2017.01078a.

[8]    Davis, F. D. (1986). Technology acceptance models for empirically testing new end-user information systems: theory and results. Cambridge: MIT Sloan School of Management.

[9]    Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37, 122-147.

[10]    Venkatesh, V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365.

[11]    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003.

[12]    Venkatesh, V. & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. http://dx.doi.org/10.1287/mnsc.46.2.186.11926.

[13]    Nikou, S. A., and Economides, A. A. (2017). Mobile-based assessment: investigating the factors that influence behavioral intention to use. Comput. Educ.109, 56–73. DOI: 10.1016/j.compedu.2017.02.005.

[14]    Bandura, A. (1986). Social foundations of thought and action: a social cognitive theory: Prentice Hall, Englewood Cliffs, NJ.

[15]    Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30, 607-610.

[16]    Evans, N. D. (2013). Predicting user acceptance of electronic learning at the University of Zululand. Unpublished Thesis. Department of Information Studies, University of Zululand, South Africa.

[17]    Chao C-M (2019) Factors determining the behavioral intention to use mobile learning: an application and extension of the UTAUT model. Frontiers in Psychology, 10(1652), 1-14. DOI: 10.3389/fpsyg.2019.01652.

[18]    Ringle, C. M., Wende, S., and Becker, J.-M. (2015). "SmartPLS 3." Boenningstedt: SmartPLS GmbH, http://www.smartpls.com.

[19]    Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling. 1st Edition. Thousand Oaks: Sage.

[20]    Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. of the Acad. Mark. Sci. 43, 115–135. DOI: 10.1007/s11747-014-0403-8.

[21]    Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling. 2nd Edition. Thousand Oaks: Sage.

[22]    Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration, 11(4), 1-10.